Question

Let $$z$$ and $$\omega $$ be two non zero complex numbers such that $$\left| z \right| = \left| \omega \right|\,\,{\text{and Arg }}z + {\text{Arg }}\omega = \pi ,$$       then $$z$$ equals

A. $$\omega $$
B. $$ - \omega $$
C. $$ \overline \omega $$
D. $$ - \overline \omega $$  
Answer :   $$ - \overline \omega $$
Solution :
$$\eqalign{ & \because \,\,\left| z \right| = \left| \omega \right|\,\,{\text{and arg }}z = \pi - \,{\text{arg }}\omega \cr & {\text{Let }}\omega = r{e^{i\theta }}\,\,{\text{then }}z = r{e^{i\left( {\pi - \theta } \right)}} \cr & \Rightarrow \,\,z = r{e^{i\pi }}.{e^{ - i\theta }} \cr & = \left( {r{e^{ - i\theta }}} \right)\left( {\cos \pi + i\sin \pi } \right) = \overline \omega \left( { - 1} \right) = - \overline \omega \cr} $$

Releted MCQ Question on
Algebra >> Complex Number

Releted Question 1

If the cube roots of unity are $$1,\omega ,{\omega ^2},$$  then the roots of the equation $${\left( {x - 1} \right)^3} + 8 = 0\,\,{\text{are}}$$

A. $$ - 1,1 + 2\omega ,1 + 2{\omega ^2}$$
B. $$ - 1,1 - 2\omega ,1 - 2{\omega ^2}$$
C. $$- 1, - 1, - 1$$
D. none of these
Releted Question 2

The smallest positive integer $$n$$ for which $${\left( {\frac{{1 + i}}{{1 - i}}} \right)^n} = 1\,{\text{is}}$$

A. $$n = 8$$
B. $$n = 16$$
C. $$n = 12$$
D. none of these
Releted Question 3

The complex numbers $$z = x+ iy$$   which satisfy the equation $$\left| {\frac{{z - 5i}}{{z + 5i}}} \right| = 1$$   lie on

A. the $$x$$ - axis
B. the straight line $$y = 5$$
C. a circle passing through the origin
D. none of these
Releted Question 4

If $$z = {\left( {\frac{{\sqrt 3 }}{2} + \frac{i}{2}} \right)^5} + {\left( {\frac{{\sqrt 3 }}{2} - \frac{i}{2}} \right)^5},\,{\text{then}}$$

A. $${\text{Re}}\left( z \right) = 0$$
B. $${\text{Im}}\left( z \right) = 0$$
C. $${\text{Re}}\left( z \right) > 0,{\text{Im}}\left( z \right) > 0$$
D. $${\text{Re}}\left( z \right) > 0,{\text{Im}}\left( z \right) < 0$$

Practice More Releted MCQ Question on
Complex Number


Practice More MCQ Question on Maths Section