Question

Let $$z$$ and $$\omega $$ be two complex numbers such that $$\left| z \right| \leqslant 1,\left| \omega \right| \leqslant 1\,\,{\text{and }}\left| {z + i\omega } \right| = \left| {z - i\overline \omega } \right| = 2$$         then $$z$$ equals

A. 1 or $$i$$
B. $$i$$ or $$- i$$
C. 1 or $$- 1$$  
D. $$i$$ or $$- 1$$
Answer :   1 or $$- 1$$
Solution :
$$\eqalign{ & {\text{Given that }}\left| {z + i\omega } \right| = \left| {z - i\overline \omega } \right| \cr & \Rightarrow \,\,\left| {z - \left( { - i\omega } \right)} \right| = \left| {z - \left( { - \overline {i\omega } } \right)} \right| \cr} $$
⇒ $$z$$ lies on perpendicular bisector of the line segment joining $${\left( { - i\omega } \right)}$$  and $${\left( { - \overline {i\omega } } \right)}$$ , which is real axis, $${\left( { - i\omega } \right)}\,$$ and $${\left( { - \overline {i\omega } } \right)}\,$$ being mirror images of each other.
$$\eqalign{ & \therefore \,\,{\text{Im}}\left( z \right) = 0. \cr & {\text{If }}z = x\,\,{\text{then }}\left| z \right| \leqslant 1 \cr & \Rightarrow \,\,{x^2} \leqslant 1 \cr & \Rightarrow \,\, - 1 \leqslant x \leqslant 1 \cr} $$
∴ $$(C)$$ is the correct option.

Releted MCQ Question on
Algebra >> Complex Number

Releted Question 1

If the cube roots of unity are $$1,\omega ,{\omega ^2},$$  then the roots of the equation $${\left( {x - 1} \right)^3} + 8 = 0\,\,{\text{are}}$$

A. $$ - 1,1 + 2\omega ,1 + 2{\omega ^2}$$
B. $$ - 1,1 - 2\omega ,1 - 2{\omega ^2}$$
C. $$- 1, - 1, - 1$$
D. none of these
Releted Question 2

The smallest positive integer $$n$$ for which $${\left( {\frac{{1 + i}}{{1 - i}}} \right)^n} = 1\,{\text{is}}$$

A. $$n = 8$$
B. $$n = 16$$
C. $$n = 12$$
D. none of these
Releted Question 3

The complex numbers $$z = x+ iy$$   which satisfy the equation $$\left| {\frac{{z - 5i}}{{z + 5i}}} \right| = 1$$   lie on

A. the $$x$$ - axis
B. the straight line $$y = 5$$
C. a circle passing through the origin
D. none of these
Releted Question 4

If $$z = {\left( {\frac{{\sqrt 3 }}{2} + \frac{i}{2}} \right)^5} + {\left( {\frac{{\sqrt 3 }}{2} - \frac{i}{2}} \right)^5},\,{\text{then}}$$

A. $${\text{Re}}\left( z \right) = 0$$
B. $${\text{Im}}\left( z \right) = 0$$
C. $${\text{Re}}\left( z \right) > 0,{\text{Im}}\left( z \right) > 0$$
D. $${\text{Re}}\left( z \right) > 0,{\text{Im}}\left( z \right) < 0$$

Practice More Releted MCQ Question on
Complex Number


Practice More MCQ Question on Maths Section