Question

Let $$y - y\left( x \right)$$   be the solution of the differential equation $$\sin \,x\frac{{dy}}{{dx}} + y\,\cos \,x = 4x,\,x \in \left( {0,\,\,\pi } \right).$$        If $$y\left( {\frac{\pi }{2}} \right) = 0,$$   then $$y\left( {\frac{\pi }{6}} \right)$$  is equal to :

A. $$\frac{{ - 8}}{{9\sqrt 3 }}{\pi ^2}$$
B. $$ - \frac{8}{9}{\pi ^2}$$  
C. $$ - \frac{4}{9}{\pi ^2}$$
D. $$\frac{4}{{9\sqrt 3 }}{\pi ^2}$$
Answer :   $$ - \frac{8}{9}{\pi ^2}$$
Solution :
Consider the given differential equation the
$$\eqalign{ & \sin \,xdy + y\,\cos \,xdx = 4xdx \cr & \Rightarrow d\left( {y.\sin \,x} \right) = 4xdx \cr} $$
Integrate both sides
$$\eqalign{ & \Rightarrow y.\sin \,x = 2{x^2} + C\,.....(1) \cr & \Rightarrow y\left( x \right) = \frac{{2{x^2}}}{{\sin \,x}} + c\,.....(2) \cr} $$
$$\because $$ equation (2) passes through $$\left( {\frac{\pi }{2},\,\,0} \right)$$
$$ \Rightarrow 0 = \frac{{{\pi ^2}}}{2} + C\,\,\, \Rightarrow C = - \frac{{{\pi ^2}}}{2}$$
Now, put the value of $$C$$ in (1)
Then, $$y\,\sin \,x = 2{x^2} - \frac{{{\pi ^2}}}{2}$$     is the solution
$$\therefore y\left( {\frac{\pi }{6}} \right) = \left( {2.\frac{{{\pi ^2}}}{{36}} - \frac{{{\pi ^2}}}{2}} \right)2 = - \frac{{8{\pi ^2}}}{9}$$

Releted MCQ Question on
Calculus >> Differential Equations

Releted Question 1

A solution of the differential equation $${\left( {\frac{{dy}}{{dx}}} \right)^2} - x\frac{{dy}}{{dx}} + y = 0$$     is-

A. $$y=2$$
B. $$y=2x$$
C. $$y=2x-4$$
D. $$y = 2{x^2} - 4$$
Releted Question 2

If $${x^2} + {y^2} = 1,$$   then

A. $$yy'' - 2{\left( {y'} \right)^2} + 1 = 0$$
B. $$yy'' + {\left( {y'} \right)^2} + 1 = 0$$
C. $$yy'' + {\left( {y'} \right)^2} - 1 = 0$$
D. $$yy'' + 2{\left( {y'} \right)^2} + 1 = 0$$
Releted Question 3

If $$y\left( t \right)$$ is a solution $$\left( {1 + t} \right)\frac{{dy}}{{dt}} - ty = 1$$    and $$y\left( 0 \right) = - 1,$$   then $$y\left( 1 \right)$$ is equal to-

A. $$ - \frac{1}{2}$$
B. $$e + \frac{1}{2}$$
C. $$e - \frac{1}{2}$$
D. $$\frac{1}{2}$$
Releted Question 4

If $$y = y\left( x \right)$$   and $$\frac{{2 + \sin \,x}}{{y + 1}}\left( {\frac{{dy}}{{dx}}} \right) = - \cos \,x,\,y\left( 0 \right) = 1,$$
then $$y\left( {\frac{\pi }{2}} \right)$$   equals-

A. $$\frac{1}{3}$$
B. $$\frac{2}{3}$$
C. $$ - \frac{1}{3}$$
D. $$1$$

Practice More Releted MCQ Question on
Differential Equations


Practice More MCQ Question on Maths Section