Question

Let $$y\left( x \right)$$ be the solution of the differential equation $$\left( {x\,\log \,x} \right)\frac{{dy}}{{dx}} + y = 2x\,\log \,x,\,\left( {x \geqslant 1} \right).$$       Then $$y\left( e \right)$$  is equal to:

A. $$2$$  
B. $$2e$$
C. $$e$$
D. $$0$$
Answer :   $$2$$
Solution :
Given, $$\frac{{dy}}{{dx}} + \left( {\frac{1}{{x\,\log \,x}}} \right)y = 2$$
$$\eqalign{ & {\text{I}}{\text{.F}}{\text{.}} = {e^{\int {\frac{1}{{x\,\log \,x}}\,dx} }} = {e^{\log \left( {\log \,x} \right)}} = \log \,x \cr & y.\log \,x = \int {2\,\log \,x\,dx + c} \cr & y.\log \,x = 2\left[ {x\,\log \,x - x} \right] + c \cr & {\text{Put }}\,x = 1,\,\,y.0 = - 2 + c\,\, \Rightarrow c = 2 \cr & {\text{Put }}x = e \cr & y\,\log \,e = 2e\left( {\log \,e - 1} \right) + c\,\,\, \Rightarrow y\left( e \right) = c = 2 \cr} $$

Releted MCQ Question on
Calculus >> Differential Equations

Releted Question 1

A solution of the differential equation $${\left( {\frac{{dy}}{{dx}}} \right)^2} - x\frac{{dy}}{{dx}} + y = 0$$     is-

A. $$y=2$$
B. $$y=2x$$
C. $$y=2x-4$$
D. $$y = 2{x^2} - 4$$
Releted Question 2

If $${x^2} + {y^2} = 1,$$   then

A. $$yy'' - 2{\left( {y'} \right)^2} + 1 = 0$$
B. $$yy'' + {\left( {y'} \right)^2} + 1 = 0$$
C. $$yy'' + {\left( {y'} \right)^2} - 1 = 0$$
D. $$yy'' + 2{\left( {y'} \right)^2} + 1 = 0$$
Releted Question 3

If $$y\left( t \right)$$ is a solution $$\left( {1 + t} \right)\frac{{dy}}{{dt}} - ty = 1$$    and $$y\left( 0 \right) = - 1,$$   then $$y\left( 1 \right)$$ is equal to-

A. $$ - \frac{1}{2}$$
B. $$e + \frac{1}{2}$$
C. $$e - \frac{1}{2}$$
D. $$\frac{1}{2}$$
Releted Question 4

If $$y = y\left( x \right)$$   and $$\frac{{2 + \sin \,x}}{{y + 1}}\left( {\frac{{dy}}{{dx}}} \right) = - \cos \,x,\,y\left( 0 \right) = 1,$$
then $$y\left( {\frac{\pi }{2}} \right)$$   equals-

A. $$\frac{1}{3}$$
B. $$\frac{2}{3}$$
C. $$ - \frac{1}{3}$$
D. $$1$$

Practice More Releted MCQ Question on
Differential Equations


Practice More MCQ Question on Maths Section