Question

Let $$y = {t^{10}} + 1$$   and $$x = {t^8} + 1,$$   then $$\frac{{{d^2}y}}{{d{x^2}}}$$  is equal to :

A. $$\frac{5}{2}{t}$$
B. $$20{t^8}$$
C. $$\frac{5}{{16{t^6}}}$$  
D. none of these
Answer :   $$\frac{5}{{16{t^6}}}$$
Solution :
$$\eqalign{ & {\text{We have, }}y = {t^{10}} + 1 \cr & \therefore \,\frac{{dy}}{{dt}} = 10{t^9} \cr & {\text{and }}x = {t^8} + 1 \Rightarrow \frac{{dx}}{{dt}} = 8{t^7} \cr & \therefore \,\frac{{dy}}{{dx}} = \frac{{\frac{{dy}}{{dt}}}}{{\frac{{dx}}{{dt}}}} = \frac{{10{t^9}}}{{8{t^7}}} = \frac{5}{4}\frac{{{t^{10}}}}{{{t^8}}} = \frac{{5\left( {y - 1} \right)}}{{4\left( {x - 1} \right)}}.....({\text{i}}) \cr & {\text{Differentiate (i) with respect to }}x,{\text{ we get}} \cr & \therefore \,\frac{{{d^2}y}}{{dx}} = \frac{5}{4}.\frac{{\left( {x - 1} \right).\frac{{dy}}{{dx}} - \left( {y - 1} \right)}}{{{{\left( {x - 1} \right)}^2}}} \cr & = \frac{5}{4}.\frac{1}{{\left( {x - 1} \right)}}\left[ {\frac{{dy}}{{dx}} - \frac{{\left( {y - 1} \right)}}{{\left( {x - 1} \right)}}} \right] \cr & = \frac{5}{4}.\frac{1}{{\left( {x - 1} \right)}}\left[ {\frac{5}{4}.\frac{{\left( {y - 1} \right)}}{{\left( {x - 1} \right)}} - \frac{{\left( {y - 1} \right)}}{{\left( {x - 1} \right)}}} \right]\,\,\,\,\,\,\,\,\left[ {{\text{Putting (i)}}} \right] \cr & = \frac{5}{4}.\frac{{\left( {y - 1} \right)}}{{{{\left( {x - 1} \right)}^2}}}\left( {\frac{5}{4} - 1} \right) \cr & = \frac{5}{{16}}.\frac{{{t^{10}}}}{{{{\left( {{t^8}} \right)}^2}}} \cr & = \frac{5}{{16{t^6}}} \cr} $$

Releted MCQ Question on
Calculus >> Differentiability and Differentiation

Releted Question 1

There exist a function $$f\left( x \right),$$  satisfying $$f\left( 0 \right) = 1,\,f'\left( 0 \right) = - 1,\,f\left( x \right) > 0$$       for all $$x,$$ and-

A. $$f''\left( x \right) > 0$$   for all $$x$$
B. $$ - 1 < f''\left( x \right) < 0$$    for all $$x$$
C. $$ - 2 \leqslant f''\left( x \right) \leqslant - 1$$    for all $$x$$
D. $$f''\left( x \right) < - 2$$   for all $$x$$
Releted Question 2

If $$f\left( a \right) = 2,\,f'\left( a \right) = 1,\,g\left( a \right) = - 1,\,g'\left( a \right) = 2,$$         then the value of $$\mathop {\lim }\limits_{x \to a} \frac{{g\left( x \right)f\left( a \right) - g\left( a \right)f\left( x \right)}}{{x - a}}$$      is-

A. $$-5$$
B. $$\frac{1}{5}$$
C. $$5$$
D. none of these
Releted Question 3

Let $$f:R \to R$$   be a differentiable function and $$f\left( 1 \right) = 4.$$   Then the value of $$\mathop {\lim }\limits_{x \to 1} \int\limits_4^{f\left( x \right)} {\frac{{2t}}{{x - 1}}} dt$$     is-

A. $$8f'\left( 1 \right)$$
B. $$4f'\left( 1 \right)$$
C. $$2f'\left( 1 \right)$$
D. $$f'\left( 1 \right)$$
Releted Question 4

Let [.] denote the greatest integer function and $$f\left( x \right) = \left[ {{{\tan }^2}x} \right],$$    then:

A. $$\mathop {\lim }\limits_{x \to 0} f\left( x \right)$$     does not exist
B. $$f\left( x \right)$$  is continuous at $$x = 0$$
C. $$f\left( x \right)$$  is not differentiable at $$x =0$$
D. $$f'\left( 0 \right) = 1$$

Practice More Releted MCQ Question on
Differentiability and Differentiation


Practice More MCQ Question on Maths Section