Question

Let $$x_1$$ and $$y_1$$ be real numbers. If $$z_1$$ and $$z_2$$ are complex numbers such that $$\left| {{z_1}} \right| = \left| {{z_2}} \right| = 4,$$   then $${\left| {{x_1}{z_1} - {y_1}{z_2}} \right|^2} + {\left| {{y_1}{z_1} + {x_1}{z_2}} \right|^2} =? $$

A. $$32\left( {{x_1}^2 + {y_1}^2} \right)$$  
B. $$16\left( {{x_1}^2 + {y_1}^2} \right)$$
C. $$4\left( {{x_1}^2 + {y_1}^2} \right)$$
D. $$32\left( {{x_1}^2 + {y_1}^2} \right){\left| {{z_1} + {z_2}} \right|^2}$$
Answer :   $$32\left( {{x_1}^2 + {y_1}^2} \right)$$
Solution :
$$\eqalign{ & {\left| {{x_1}{z_1} - {y_1}{z_2}} \right|^2} + {\left| {{y_1}{z_1} - {x_1}{z_2}} \right|^2} \cr & = {\left| {{x_1}{z_1}} \right|^2} + {\left| {{y_1}{z_2}} \right|^2} - 2\operatorname{Re} \left( {{x_1}{y_1}{z_1}{z_2}} \right) + {\left| {{y_1}{z_1}} \right|^2} + {\left| {{x_1}{z_2}} \right|^2} + 2\operatorname{Re} \left( {{x_1}{y_1}{z_1}{z_2}} \right) \cr & = {x_1}^2{\left| {{z_1}} \right|^2} + {y_1}^2{\left| {{z_2}} \right|^2} + {y_1}^2{\left| {{z_1}} \right|^2} + {x_1}^2{\left| {{z_2}} \right|^2} \cr & = 2\left( {{x_1}^2 + {y_1}^2} \right)\left( {{4^2}} \right) = 32\left( {{x_1}^2 + {y_1}^2} \right) \cr} $$
Alternate Solution
$$\eqalign{ & {\text{Given, }}\left| {{z_1}} \right| = \left| {{z_2}} \right| = 4......\left( {\text{i}} \right) \cr & {\text{Now, }}{\left| {{x_1}{z_1} - {y_1}{z_2}} \right|^2} + {\left| {{y_1}{z_1} - {x_1}{z_2}} \right|^2} \cr & {\text{ = }}{\left| {{x_1}{z_1}} \right|^2} + {\left| {{y_1}{z_2}} \right|^2} - 2{x_1}{z_1}.{y_1}{z_2} + {\left| {{y_1}{z_1}} \right|^2} + {\left| {{x_1}{z_2}} \right|^2} + 2{y_1}{z_1}{x_1}{z_2} \cr & {\text{ = }}{\left| {{x_1}} \right|^2}{\left| {{z_1}} \right|^2} + {\left| {{y_1}} \right|^2}{\left| {{z_2}} \right|^2} + {\left| {{y_1}} \right|^2}{\left| {{z_1}} \right|^2} + {\left| {{x_1}} \right|^2}{\left| {{z_2}} \right|^2} \cr & = x_1^2{\left( 4 \right)^2} + y_1^2{\left( 4 \right)^2} + y_1^2{\left( 4 \right)^2} + x_1^2{\left( 4 \right)^2}\,\,\,\,\,\,\left( {\because \,{{\left| z \right|}^2} = {z^2}} \right) \cr & {\text{ = 2}}{\text{.}}{\left( 4 \right)^2}.x_1^2 + 2.{\left( 4 \right)^2}.y_1^2 \cr & {\text{ = 32}}\left( {x_1^2 + y_1^2} \right) \cr} $$

Releted MCQ Question on
Algebra >> Complex Number

Releted Question 1

If the cube roots of unity are $$1,\omega ,{\omega ^2},$$  then the roots of the equation $${\left( {x - 1} \right)^3} + 8 = 0\,\,{\text{are}}$$

A. $$ - 1,1 + 2\omega ,1 + 2{\omega ^2}$$
B. $$ - 1,1 - 2\omega ,1 - 2{\omega ^2}$$
C. $$- 1, - 1, - 1$$
D. none of these
Releted Question 2

The smallest positive integer $$n$$ for which $${\left( {\frac{{1 + i}}{{1 - i}}} \right)^n} = 1\,{\text{is}}$$

A. $$n = 8$$
B. $$n = 16$$
C. $$n = 12$$
D. none of these
Releted Question 3

The complex numbers $$z = x+ iy$$   which satisfy the equation $$\left| {\frac{{z - 5i}}{{z + 5i}}} \right| = 1$$   lie on

A. the $$x$$ - axis
B. the straight line $$y = 5$$
C. a circle passing through the origin
D. none of these
Releted Question 4

If $$z = {\left( {\frac{{\sqrt 3 }}{2} + \frac{i}{2}} \right)^5} + {\left( {\frac{{\sqrt 3 }}{2} - \frac{i}{2}} \right)^5},\,{\text{then}}$$

A. $${\text{Re}}\left( z \right) = 0$$
B. $${\text{Im}}\left( z \right) = 0$$
C. $${\text{Re}}\left( z \right) > 0,{\text{Im}}\left( z \right) > 0$$
D. $${\text{Re}}\left( z \right) > 0,{\text{Im}}\left( z \right) < 0$$

Practice More Releted MCQ Question on
Complex Number


Practice More MCQ Question on Maths Section