Question

Let $$x \in \left( {0,1} \right).$$   The set of all $$x$$ such that $${\sin ^{ - 1}}x > {\cos ^{ - 1}}x,$$    is the interval :

A. $$\left( {\frac{1}{2},\frac{1}{{\sqrt 2 }}} \right)$$
B. $$\left( {\frac{1}{{\sqrt 2 }},1} \right)$$  
C. $$\left( {0,1} \right)$$
D. $$\left( {0,\frac{{\sqrt 3 }}{2}} \right)$$
Answer :   $$\left( {\frac{1}{{\sqrt 2 }},1} \right)$$
Solution :
$$\eqalign{ & {\text{Given, }}\,{\sin ^{ - 1}}x > {\cos ^{ - 1}}x{\text{ where}}\,x \in \left( {0,1} \right) \cr & \Rightarrow {\sin ^{ - 1}}x > \frac{\pi }{2} - {\sin ^{ - 1}}x \cr & \Rightarrow 2\,{\sin ^{ - 1}}x > \frac{\pi }{2} \cr & \Rightarrow {\sin ^{ - 1}}x > \frac{\pi }{4} \cr & \Rightarrow x > \sin \frac{\pi }{4} \cr & \Rightarrow x > \frac{1}{{\sqrt 2 }} \cr} $$
Maximum value of $${\sin ^{ - 1}}x\,\,{\text{is }}\,\frac{\pi }{2}$$
So, maximum value of $$x$$ is $$1.$$ So, $$x \in \left( {\frac{1}{{\sqrt 2 }},1} \right).$$

Releted MCQ Question on
Trigonometry >> Inverse Trigonometry Function

Releted Question 1

The value of $$\tan \left[ {{{\cos }^{ - 1}}\left( {\frac{4}{5}} \right) + {{\tan }^{ - 1}}\left( {\frac{2}{3}} \right)} \right]$$      is

A. $$\frac{6}{{17}}$$
B. $$\frac{7}{{16}}$$
C. $$\frac{16}{{7}}$$
D. none
Releted Question 2

If we consider only the principle values of the inverse trigonometric functions then the value of $$\tan \left( {{{\cos }^{ - 1}}\frac{1}{{5\sqrt 2 }} - {{\sin }^{ - 1}}\frac{4}{{\sqrt {17} }}} \right)$$      is

A. $$\frac{{\sqrt {29} }}{3}$$
B. $$\frac{{29}}{3}$$
C. $$\frac{{\sqrt {3}}}{29}$$
D. $$\frac{{3}}{29}$$
Releted Question 3

The number of real solutions of $${\tan ^{ - 1}}\sqrt {x\left( {x + 1} \right)} + {\sin ^{ - 1}}\sqrt {{x^2} + x + 1} = \frac{\pi }{2}$$         is

A. zero
B. one
C. two
D. infinite
Releted Question 4

If $${\sin ^{ - 1}}\left( {x - \frac{{{x^2}}}{2} + \frac{{{x^3}}}{4} - .....} \right) + {\cos ^{ - 1}}\left( {{x^2} - \frac{{{x^4}}}{2} + \frac{{{x^6}}}{4} - .....} \right) = \frac{\pi }{2}$$             for $$0 < \left| x \right| < \sqrt 2 ,$$   then $$x$$ equals

A. $$ \frac{1}{2}$$
B. 1
C. $$ - \frac{1}{2}$$
D. $$- 1$$

Practice More Releted MCQ Question on
Inverse Trigonometry Function


Practice More MCQ Question on Maths Section