Question

Let $$\left[ x \right]$$ denote the greatest integer less than or equal to $$x.$$ Now $$g\left( x \right)$$  is defined as below :
\[g\left( x \right) = \left\{ \begin{array}{l} \left[ {f\left( x \right)} \right],\,x\, \in \left( {0,\,\frac{\pi }{2}} \right) \cup \left( {\frac{\pi }{2},\,\pi } \right)\\ \,3,\,x = \frac{\pi }{2} \end{array} \right.\]
where $$f\left( x \right) = \frac{{2\left( {\sin \,x - {{\sin }^n}x} \right) + \left| {\sin \,x - {{\sin }^n}x} \right|}}{{2\left( {\sin \,x - {{\sin }^n}x} \right) - \left| {\sin \,x - {{\sin }^n}x} \right|}},\,n\, \in \,R.$$           Then :

A. $$g\left( x \right)$$  is continuous and differentiable at $$x = \frac{\pi }{2}$$  when $$n > 1$$  
B. $$g\left( x \right)$$  is continuous and differentiable at $$x = \frac{\pi }{2}$$  when $$0 < n < 1$$
C. $$g\left( x \right)$$  is continuous but not differentiable at $$x = \frac{\pi }{2}$$  when $$n > 1$$
D. $$g\left( x \right)$$  is continuous but differentiable at $$x = \frac{\pi }{2}$$  when $$0 < n < 1$$
Answer :   $$g\left( x \right)$$  is continuous and differentiable at $$x = \frac{\pi }{2}$$  when $$n > 1$$
Solution :
$$\eqalign{ & {\text{If }}n > 1,\,\sin \,x > {\sin ^n}x.{\text{ If }}0 < n < 1,\,\sin \,x < {\sin ^n}x\, \cr & \therefore {\text{ if }}n > 1,\,f\left( x \right) = \frac{{2\left( {\sin \,x - {{\sin }^n}x} \right) + \left| {\sin \,x - {{\sin }^n}x} \right|}}{{2\left( {\sin \,x - {{\sin }^n}x} \right) - \left| {\sin \,x - {{\sin }^n}x} \right|}} = 3 \cr & {\text{If }}0 < n < 1,\,f\left( x \right) = \frac{{2\left( {\sin \,x - {{\sin }^n}x} \right) - \left| {\sin \,x - {{\sin }^n}x} \right|}}{{2\left( {\sin \,x - {{\sin }^n}x} \right) + \left| {\sin \,x - {{\sin }^n}x} \right|}} = \frac{1}{3} \cr & \therefore {\text{ if }}n > 1,\,g\left( x \right) = 3,\,x\, \in \left( {0,\,\pi } \right)\, \cr} $$
$$\therefore \,g\left( x \right)$$   is continuous and differentiable at $$x = \frac{\pi }{2}$$
$$\eqalign{ & {\text{If }}\,0 < n < 1,\,g\left( x \right) = 0\,x\, \in \left( {0,\,\frac{\pi }{2}} \right) \cup \left( {\frac{\pi }{2},\,\pi } \right) \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = 3,\,x = \frac{\pi }{2} \cr} $$
Then $$g\left( {\frac{\pi }{2} + 0} \right) = 0,\,\,g\left( {\frac{\pi }{2} - 0} \right) = 0,\,\,g\left( {\frac{\pi }{2}} \right) = 3$$
So, $$g\left( x \right)$$  is not continuous at $$x = \frac{\pi }{2}$$
Hence, $$g\left( x \right)$$  is also not differentiable at $$x = \frac{\pi }{2}.$$

Releted MCQ Question on
Calculus >> Continuity

Releted Question 1

For a real number $$y,$$ let $$\left[ y \right]$$ denotes the greatest integer less than or equal to $$y:$$ Then the function $$f\left( x \right) = \frac{{\tan \left( {\pi \left[ {x - \pi } \right]} \right)}}{{1 + {{\left[ x \right]}^2}}}$$     is-

A. discontinuous at some $$x$$
B. continuous at all $$x,$$ but the derivative $$f'\left( x \right)$$  does not exist for some $$x$$
C. $$f'\left( x \right)$$  exists for all $$x,$$ but the second derivative $$f'\left( x \right)$$  does not exist for some $$x$$
D. $$f'\left( x \right)$$  exists for all $$x$$
Releted Question 2

The function $$f\left( x \right) = \frac{{\ln \left( {1 + ax} \right) - \ln \left( {1 - bx} \right)}}{x}$$       is not defined at $$x = 0.$$  The value which should be assigned to $$f$$ at $$x = 0,$$  so that it is continuous at $$x =0,$$  is-

A. $$a-b$$
B. $$a+b$$
C. $$\ln a - \ln b$$
D. none of these
Releted Question 3

The function $$f\left( x \right) = \left[ x \right]\cos \left( {\frac{{2x - 1}}{2}} \right)\pi ,\,\left[ . \right]$$      denotes the greatest integer function, is discontinuous at-

A. all $$x$$
B. All integer points
C. No $$x$$
D. $$x$$ which is not an integer
Releted Question 4

The function $$f\left( x \right) = {\left[ x \right]^2} - \left[ {{x^2}} \right]$$    (where $$\left[ y \right]$$ is the greatest integer less than or equal to $$y$$ ), is discontinuous at-

A. all integers
B. all integers except 0 and 1
C. all integers except 0
D. all integers except 1

Practice More Releted MCQ Question on
Continuity


Practice More MCQ Question on Maths Section