Question

Let $$X$$ and $$Y$$ be two non-empty sets such that $$X \cap A = Y \cap A = \phi $$     and $$X \cup A = Y \cup A$$    for some non-empty set $$A.$$ Then :

A. $$X$$ is a proper subset of $$Y$$
B. $$Y$$ is a proper subset of $$X$$
C. $$X = Y$$  
D. $$X$$ and $$Y$$ are disjoint sets
Answer :   $$X = Y$$
Solution :
$$\eqalign{ & {\text{Suppose }}a\, \in \,X{\text{ and }}a\, \in \,A \cr & \Rightarrow a\, \in \,X \cup A \cr & \Rightarrow a\, \in \,Y{\text{ and }}a\, \in \,A\,\,\left( {\because \,X \cup A = Y \cup A} \right) \cr & \Rightarrow a\, \in \,Y \cap A \cr & \Rightarrow Y \cap A{\text{ is non - empty}} \cr & {\text{This contradicts that }}Y \cap A = \phi \cr & {\text{So, }}X = Y \cr} $$

Releted MCQ Question on
Calculus >> Sets and Relations

Releted Question 1

If $$X$$ and $$Y$$ are two sets, then $$X \cap {\left( {X \cup Y} \right)^c}$$   equals.

A. $$X$$
B. $$Y$$
C. $$\phi $$
D. None of these
Releted Question 2

The expression $$\frac{{12}}{{3 + \sqrt 5 + 2\sqrt 2 }}$$    is equal to

A. $$1 - \sqrt 5 + \sqrt 2 + \sqrt {10} $$
B. $$1 + \sqrt 5 + \sqrt 2 - \sqrt {10} $$
C. $$1 + \sqrt 5 - \sqrt 2 + \sqrt {10} $$
D. $$1 - \sqrt 5 - \sqrt 2 + \sqrt {10} $$
Releted Question 3

If $${x_1},{x_2},.....,{x_n}$$    are any real numbers and $$n$$ is any positive integer, then

A. $$n\sum\limits_{i = 1}^n {{x_i}^2 < {{\left( {\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} $$
B. $$\sum\limits_{i = 1}^n {{x_i}^2 \geqslant {{\left( {\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} $$
C. $$\sum\limits_{i = 1}^n {{x_i}^2 \geqslant n{{\left( {\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} $$
D. none of these
Releted Question 4

Let $$S$$ = {1, 2, 3, 4}. The total number of unordered pairs of disjoint subsets of $$S$$ is equal to

A. 25
B. 34
C. 42
D. 41

Practice More Releted MCQ Question on
Sets and Relations


Practice More MCQ Question on Maths Section