Question

Let $${x^2} + 3{y^2} = 3$$   be the equation of an ellipse in the $$x$$-$$y$$ plane. $$A$$ and $$B$$ are two points whose position vectors are $$ - \sqrt 3 \hat i$$  and $$ - \sqrt 3 \hat i + 2\hat k.$$   Then the position vector of a point $$P$$ on the ellipse such that $$\angle APB = \frac{\pi }{4}$$   is :

A. $$ \pm \hat j$$  
B. $$ \pm \left( {\hat i + \hat j} \right)$$
C. $$ \pm \hat i$$
D. none of these
Answer :   $$ \pm \hat j$$
Solution :
Point $$P$$ lies on $${x^2} + 3{y^2} = 3......\left( {\text{i}} \right)$$
3D Geometry and Vectors mcq solution image
Now from the diagram, according to the given conditions,
$$\eqalign{ & AP = AB{\text{ or }}{\left( {x + \sqrt 3 } \right)^2} + {\left( {y - 0} \right)^2} = 4 \cr & {\text{or }}{\left( {x + \sqrt 3 } \right)^2} + {y^2} = 4......\left( {{\text{ii}}} \right) \cr} $$
Solving $$\left( {\text{i}} \right)$$ and $$\left( {\text{ii}} \right),$$ we get $$x = 0$$  and $$y = \pm 1$$
Hence, point $$P$$ has position vector $$ \pm \hat j.$$

Releted MCQ Question on
Geometry >> 3D Geometry and Vectors

Releted Question 1

The scalar $$\vec A.\left( {\vec B + \vec C} \right) \times \left( {\vec A + \vec B + \vec C} \right)$$      equals :

A. $$0$$
B. $$\left[ {\vec A\,\vec B\,\vec C} \right] + \left[ {\vec B\,\vec C\,\vec A} \right]$$
C. $$\left[ {\vec A\,\vec B\,\vec C} \right]$$
D. None of these
Releted Question 2

For non-zero vectors $$\vec a,\,\vec b,\,\vec c,\,\left| {\left( {\vec a \times \vec b} \right).\vec c} \right| = \left| {\vec a} \right|\left| {\vec b} \right|\left| {\vec c} \right|$$       holds if and only if -

A. $$\vec a.\vec b = 0,\,\,\,\vec b.\vec c = 0$$
B. $$\vec b.\vec c = 0,\,\,\,\vec c.\vec a = 0$$
C. $$\vec c.\vec a = 0,\,\,\,\vec a.\vec b = 0$$
D. $$\vec a.\vec b = \vec b.\vec c = \vec c.\vec a = 0$$
Releted Question 3

The volume of the parallelepiped whose sides are given by $$\overrightarrow {OA} = 2i - 2j,\,\,\overrightarrow {OB} = i + j - k,\,\,\overrightarrow {OC} = 3i - k,$$         is :

A. $$\frac{4}{{13}}$$
B. $$4$$
C. $$\frac{2}{7}$$
D. none of these
Releted Question 4

The points with position vectors $$60i + 3j,\,\,40i - 8j,\,\,ai - 52j$$      are collinear if :

A. $$a = - 40$$
B. $$a = 40$$
C. $$a = 20$$
D. none of these

Practice More Releted MCQ Question on
3D Geometry and Vectors


Practice More MCQ Question on Maths Section