Question

Let $$\vec u,\,\vec v,\,\vec w$$   be such that $$\left| {\vec u} \right| = 1,\,\left| {\vec v} \right| = 2,\,\left| {\vec w} \right| = 3.$$      If the projection $${\vec v}$$ along $${\vec u}$$ is equal to that of $${\vec w}$$ along $${\vec u}$$ and $$\vec v,\,\vec w$$  are perpendicular to each other then $$\left| {\vec u - \vec v + \vec w} \right|$$   equals :

A. $$14$$
B. $$\sqrt 7 $$
C. $$\sqrt 14 $$  
D. $$2$$
Answer :   $$\sqrt 14 $$
Solution :
Projection of $${\vec v}$$ along $$\vec u = \frac{{\vec v.\vec u}}{{\left| {\vec u} \right|}} = \frac{{\vec v.\vec u}}{2}$$
projection of $${\vec w}$$ along $$\vec u = \frac{{\vec w.\vec u}}{{\left| {\vec u} \right|}} = \frac{{\vec w.\vec u}}{2}$$
$$\eqalign{ & {\text{Given }}\frac{{\vec v.\vec u}}{2} = \frac{{\vec w.\vec u}}{2}.....(1) \cr & {\text{Also,}}\,\,{\text{ }}\vec v.\,\vec w = 0.....(2) \cr & {\text{Now }}\,\,{\text{ }}{\left| {\vec u - \vec v + \vec w} \right|^2} \cr & = {\left| {\vec u} \right|^2} + {\left| {\vec v} \right|^2} + {\left| {\vec w} \right|^2} - 2\vec u.\vec v - 2\vec v.\vec w + 2\vec u.\vec w \cr & = 1 + 4 + 9 + 0\,\,\,\,\,\,\left[ {{\text{ From equation (1) and (2)}}} \right] \cr & = 14 \cr & \therefore \,\left| {\vec u - \vec v + \vec w} \right| = \sqrt {14} \, \cr} $$

Releted MCQ Question on
Geometry >> 3D Geometry and Vectors

Releted Question 1

The scalar $$\vec A.\left( {\vec B + \vec C} \right) \times \left( {\vec A + \vec B + \vec C} \right)$$      equals :

A. $$0$$
B. $$\left[ {\vec A\,\vec B\,\vec C} \right] + \left[ {\vec B\,\vec C\,\vec A} \right]$$
C. $$\left[ {\vec A\,\vec B\,\vec C} \right]$$
D. None of these
Releted Question 2

For non-zero vectors $$\vec a,\,\vec b,\,\vec c,\,\left| {\left( {\vec a \times \vec b} \right).\vec c} \right| = \left| {\vec a} \right|\left| {\vec b} \right|\left| {\vec c} \right|$$       holds if and only if -

A. $$\vec a.\vec b = 0,\,\,\,\vec b.\vec c = 0$$
B. $$\vec b.\vec c = 0,\,\,\,\vec c.\vec a = 0$$
C. $$\vec c.\vec a = 0,\,\,\,\vec a.\vec b = 0$$
D. $$\vec a.\vec b = \vec b.\vec c = \vec c.\vec a = 0$$
Releted Question 3

The volume of the parallelepiped whose sides are given by $$\overrightarrow {OA} = 2i - 2j,\,\,\overrightarrow {OB} = i + j - k,\,\,\overrightarrow {OC} = 3i - k,$$         is :

A. $$\frac{4}{{13}}$$
B. $$4$$
C. $$\frac{2}{7}$$
D. none of these
Releted Question 4

The points with position vectors $$60i + 3j,\,\,40i - 8j,\,\,ai - 52j$$      are collinear if :

A. $$a = - 40$$
B. $$a = 40$$
C. $$a = 20$$
D. none of these

Practice More Releted MCQ Question on
3D Geometry and Vectors


Practice More MCQ Question on Maths Section