Question

Let the interval $$I = \left[ { - 1,\,4} \right]$$   and $$f:I \to R$$   be a function such that $$f\left( x \right) = {x^3} - 3x.$$    Then the range of the function is :

A. $$\left[ {2,\,52} \right]$$
B. $$\left[ { - 2,\,2} \right]$$
C. $$\left[ { - 2,\,52} \right]$$  
D. none of these
Answer :   $$\left[ { - 2,\,52} \right]$$
Solution :
$$\eqalign{ & f'\left( x \right) = 3{x^2} - 3 = 3\left( {{x^2} - 1} \right) \cr & {\text{So, }}f'\left( x \right) \leqslant 0{\text{ if }} - 1 \leqslant x \leqslant 1{\text{ and }}f'\left( x \right) > 0{\text{ if }}1 < x \leqslant 4 \cr} $$
$$\therefore f\left( x \right)$$   is decreasing in $$ - 1 \leqslant x \leqslant 1$$   and increasing in $$1 < x \leqslant 4$$
$$\therefore \min f\left( x \right) = f\left( 1 \right),\,\max f\left( x \right) = $$       the greatest among $$\left\{ {f\left( { - 1} \right),\,f\left( 4 \right)} \right\}$$
$$\eqalign{ & {\text{Now,}}\,f\left( 1 \right) = {1^3} - 3.1 = - 2 \cr & f\left( { - 1} \right) = {\left( { - 1} \right)^3} - 3\left( { - 1} \right) = 2 \cr & f\left( 4 \right) = 64 - 12 = 52 \cr} $$
$$\therefore $$ the range of the function $$\left[ { - 2,\,52} \right]$$

Releted MCQ Question on
Calculus >> Application of Derivatives

Releted Question 1

If  $$a + b + c = 0,$$    then the quadratic equation $$3a{x^2}+ 2bx + c = 0$$     has

A. at least one root in $$\left[ {0, 1} \right]$$
B. one root in $$\left[ {2, 3} \right]$$  and the other in $$\left[ { - 2, - 1} \right]$$
C. imaginary roots
D. none of these
Releted Question 2

$$AB$$  is a diameter of a circle and $$C$$ is any point on the circumference of the circle. Then

A. the area of $$\Delta ABC$$  is maximum when it is isosceles
B. the area of $$\Delta ABC$$  is minimum when it is isosceles
C. the perimeter of $$\Delta ABC$$  is minimum when it is isosceles
D. none of these
Releted Question 3

The normal to the curve $$x = a\left( {\cos \theta + \theta \sin \theta } \right),y = a\left( {\sin \theta - \theta \cos \theta } \right)$$        at any point $$'\theta '$$ is such that

A. it makes a constant angle with the $$x - $$axis
B. it passes through the origin
C. it is at a constant distance from the origin
D. none of these
Releted Question 4

If $$y = a\ln x + b{x^2} + x$$     has its extremum values at $$x = - 1$$  and $$x = 2,$$  then

A. $$a = 2,b = - 1$$
B. $$a = 2,b = - \frac{1}{2}$$
C. $$a = - 2,b = \frac{1}{2}$$
D. none of these

Practice More Releted MCQ Question on
Application of Derivatives


Practice More MCQ Question on Maths Section