Question

Let $$\sum\limits_{n = 1}^n {{r^4} = f\left( n \right).} $$   Then $$\sum\limits_{r = 1}^n {{{\left( {2r - 1} \right)}^4}} $$   is equal to

A. $$f\left( {2n} \right) - 16f\left( n \right)\,{\text{for all }}n \in N$$  
B. $$f\left( n \right) - 16f\left( {\frac{{n - 1}}{2}} \right)\,{\text{when }}n\,\,{\text{is odd}}$$
C. $$f\left( n \right) - 16f\left( {\frac{{n}}{2}} \right)\,{\text{when }}n\,\,{\text{is even}}$$
D. None of these
Answer :   $$f\left( {2n} \right) - 16f\left( n \right)\,{\text{for all }}n \in N$$
Solution :
$$\eqalign{ & \sum\limits_{r = 1}^n {{{\left( {2r - 1} \right)}^4} = {1^4} + {3^4} + {5^4} + ..... + {{\left( {2n - 1} \right)}^4}} \cr & \sum\limits_{r = 1}^n {{{\left( {2r - 1} \right)}^4} = {1^4} + {2^4} + {3^4} + ..... + } {\left( {2n} \right)^4} - \left\{ {{2^4} + {4^4} + ..... + {{\left( {2n} \right)}^4}} \right\} \cr & \sum\limits_{r = 1}^n {{{\left( {2r - 1} \right)}^4} = f\left( {2n} \right) - 16\left\{ {{1^4} + {2^4} + ..... + {n^4}} \right\} = f\left( {2n} \right) - 16f\left( n \right).} \cr & {\text{If }}n = 2m,\,{\text{then }}\sum\limits_{r = 1}^n {{{\left( {2r - 1} \right)}^4} = {1^4} + {3^4} + {5^4} + ..... + {{\left( {4m - 1} \right)}^4}} \cr & = {1^4} + {2^4} + {3^4} + ..... + {\left( {2m} \right)^4} + {\left( {2m + 1} \right)^4} + ..... + {\left( {4m - 1} \right)^4} + {\left( {4m} \right)^4} - \left\{ {{2^4} + {4^4} + ..... + {{\left( {4m} \right)}^4}} \right\} \cr & = f\left( {4m} \right) - 16\left\{ {{1^4} + {2^4} + ..... + {{\left( {2m} \right)}^4}} \right\} \cr & = f\left( {2n} \right) - 16f\left( n \right),{\text{e}}{\text{.t}}{\text{.c}}{\text{.}} \cr} $$

Releted MCQ Question on
Algebra >> Sequences and Series

Releted Question 1

If $$x, y$$ and $$z$$ are $${p^{{\text{th}}}},{q^{{\text{th}}}}\,{\text{and }}{r^{{\text{th}}}}$$   terms respectively of an A.P. and also of a G.P., then $${x^{y - z}}{y^{z - x}}{z^{x - y}}$$   is equal to:

A. $$xyz$$
B. 0
C. 1
D. None of these
Releted Question 2

The third term of a geometric progression is 4. The product of the first five terms is

A. $${4^3}$$
B. $${4^5}$$
C. $${4^4}$$
D. none of these
Releted Question 3

The rational number, which equals the number $$2.\overline {357} $$   with recurring decimal is

A. $$\frac{{2355}}{{1001}}$$
B. $$\frac{{2379}}{{997}}$$
C. $$\frac{{2355}}{{999}}$$
D. none of these
Releted Question 4

If $$a, b, c$$  are in G.P., then the equations $$a{x^2} + 2bx + c = 0$$     and $$d{x^2} + 2ex + f = 0$$     have a common root if $$\frac{d}{a},\frac{e}{b},\frac{f}{c}$$   are in-

A. A.P.
B. G.P.
C. H.P.
D. none of these

Practice More Releted MCQ Question on
Sequences and Series


Practice More MCQ Question on Maths Section