Question

Let $$\sum\limits_{k = 1}^{10} f \left( {a + k} \right) = 16\left( {{2^{10}} - 1} \right),$$      where the function $$f$$ satisfies $$f\left( {x + y} \right) = f\left( x \right)f\left( y \right)$$     for all natural numbers $$x,y$$  and $$f\left( a \right) = 2.$$   Then the natural number $$'a'$$ is:

A. 2
B. 16
C. 4
D. 3  
Answer :   3
Solution :
$$\eqalign{ & \because f\left( {x + y} \right) = f\left( x \right).f\left( y \right) \cr & \Rightarrow {\text{ Let }}f\left( x \right) = {t^x} \cr & \because f\left( a \right) = 2\therefore t = 2 \cr & \Rightarrow f\left( x \right) = {2^x} \cr & {\text{Since, }}\sum\limits_{k = 1}^{10} f \left( {a + k} \right) = 16\left( {{2^{10}} - 1} \right) \cr & {\text{Then }},\sum\limits_{k = 1}^{10} {{2^{a + k}}} = 16\left( {{2^{10}} - 1} \right) \cr & \Rightarrow {2^a}\sum\limits_{k = 1}^{10} {{2^k}} = 16\left( {{2^{10}} - 1} \right) \cr & \Rightarrow {2^a} \times \frac{{\left( {\left( {{2^{10}}} \right) - 1} \right) \times 2}}{{(2 - 1)}} = 16 \times \left( {{2^{10}} - 1} \right) \cr & \Rightarrow {2.2^a} = 16 \Rightarrow {\text{a}} = 3 \cr} $$

Releted MCQ Question on
Calculus >> Function

Releted Question 1

Let $$R$$ be the set of real numbers. If $$f:R \to R$$   is a function defined by $$f\left( x \right) = {x^2},$$   then $$f$$ is:

A. Injective but not surjective
B. Surjective but not injective
C. Bijective
D. None of these.
Releted Question 2

The entire graphs of the equation $$y = {x^2} + kx - x + 9$$     is strictly above the $$x$$-axis if and only if

A. $$k < 7$$
B. $$ - 5 < k < 7$$
C. $$k > - 5$$
D. None of these.
Releted Question 3

Let $$f\left( x \right) = \left| {x - 1} \right|.$$    Then

A. $$f\left( {{x^2}} \right) = {\left( {f\left( x \right)} \right)^2}$$
B. $$f\left( {x + y} \right) = f\left( x \right) + f\left( y \right)$$
C. $$f\left( {\left| x \right|} \right) = \left| {f\left( x \right)} \right|$$
D. None of these
Releted Question 4

If $$x$$ satisfies $$\left| {x - 1} \right| + \left| {x - 2} \right| + \left| {x - 3} \right| \geqslant 6,$$       then

A. $$0 \leqslant x \leqslant 4$$
B. $$x \leqslant - 2\,{\text{or}}\,x \geqslant 4$$
C. $$x \leqslant 0\,{\text{or}}\,x \geqslant 4$$
D. None of these

Practice More Releted MCQ Question on
Function


Practice More MCQ Question on Maths Section