Question

Let $${S_1} = \sum\limits_{j = 1}^{10} {j\left( {j - 1} \right)\,{\,^{10}}{C_j},\,\,{S_2} = \sum\limits_{j = 1}^{10} {j\,{\,^{10}}{C_j}\,{\text{and }}{S_3} = \sum\limits_{j = 1}^{10} {{j^2}\,{\,^{10}}{C_j}.} } } $$
Statement - 1 : $${S_3} = 55 \times {2^9}.$$
Statement - 2 : $${S_1} = 90 \times {2^8}\,{\text{and }}{S_2} = 10 \times {2^8}.$$

A. Statement - 1 is true, Statement - 2 is true ; Statement - 2 is not a correct explanation for Statement - 1.
B. Statement - 1 is true, Statement - 2 is false.  
C. Statement - 1 is false, Statement - 2 is true.
D. Statement - 1 is true, Statement - 2 is true ; Statement - 2 is a correct explanation for Statement - 1.
Answer :   Statement - 1 is true, Statement - 2 is false.
Solution :
$$\eqalign{ & {S_2} = \sum\limits_{j = 1}^{10} {j\,{\,^{10}}{C_j} = \sum\limits_{j = 1}^{10} {10} \,{\,^9}{C_{j - 1}}} \cr & = 10\left[ {^9{C_0} + {\,^9}{C_1} + {\,^9}{C_2} + ..... + {\,^9}{C_9}} \right] = 10.\,{2^9} \cr} $$

Releted MCQ Question on
Algebra >> Binomial Theorem

Releted Question 1

Given positive integers $$r > 1, n > 2$$   and that the co - efficient of $${\left( {3r} \right)^{th}}\,{\text{and }}{\left( {r + 2} \right)^{th}}$$    terms in the binomial expansion of $${\left( {1 + x} \right)^{2n}}$$  are equal. Then

A. $$n = 2r$$
B. $$n = 2r + 1$$
C. $$n = 3r$$
D. none of these
Releted Question 2

The co-efficient of $${x^4}$$ in $${\left( {\frac{x}{2} - \frac{3}{{{x^2}}}} \right)^{10}}$$   is

A. $$\frac{{405}}{{256}}$$
B. $$\frac{{504}}{{259}}$$
C. $$\frac{{450}}{{263}}$$
D. none of these
Releted Question 3

The expression $${\left( {x + {{\left( {{x^3} - 1} \right)}^{\frac{1}{2}}}} \right)^5} + {\left( {x - {{\left( {{x^3} - 1} \right)}^{\frac{1}{2}}}} \right)^5}$$       is a polynomial of degree

A. 5
B. 6
C. 7
D. 8
Releted Question 4

If in the expansion of $${\left( {1 + x} \right)^m}{\left( {1 - x} \right)^n},$$    the co-efficients of $$x$$ and $${x^2}$$ are $$3$$ and $$- 6\,$$ respectively, then $$m$$ is

A. 6
B. 9
C. 12
D. 24

Practice More Releted MCQ Question on
Binomial Theorem


Practice More MCQ Question on Maths Section