Question

Let $$S = \left\{ {x \in R:x \geqslant 0} \right.$$     and $$2\left| {\sqrt x - 3} \right| + \sqrt x \left( {\sqrt x - 6} \right) + 6 = 0.$$       Then $$S$$:

A. contains exactly one element.
B. contains exactly two element.  
C. contains exactly four element.
D. is an empty set.
Answer :   contains exactly two element.
Solution :
Case - I : $$x \in \left[ {0,9} \right]$$
$$\eqalign{ & 2\left( {3 - \sqrt x } \right) + x - 6\sqrt x + 6 = 0 \cr & \Rightarrow \,\,x - 8\sqrt x + 12 = 0 \cr & \Rightarrow \,\,\sqrt x = 4,2 \cr & \Rightarrow \,\,x = 16,4 \cr & {\text{Since}}\,{\text{ }}x \in \left[ {0,9} \right] \cr & \therefore \,\,x = 4 \cr} $$
Case - II : $$x \in \left[ {9,\infty } \right]$$
$$\eqalign{ & 2\left( {\sqrt x - 3} \right) + x - 6\sqrt x + 6 = 0 \cr & \Rightarrow \,\,x - 4\sqrt x = 0 \cr & \Rightarrow \,\,x = 16,0 \cr & {\text{Since }}x \in \left[ {9,\infty } \right] \cr & \therefore \,\,x = 16 \cr & {\text{Hence, }}x = 4\,\& 16 \cr} $$

Releted MCQ Question on
Calculus >> Sets and Relations

Releted Question 1

If $$X$$ and $$Y$$ are two sets, then $$X \cap {\left( {X \cup Y} \right)^c}$$   equals.

A. $$X$$
B. $$Y$$
C. $$\phi $$
D. None of these
Releted Question 2

The expression $$\frac{{12}}{{3 + \sqrt 5 + 2\sqrt 2 }}$$    is equal to

A. $$1 - \sqrt 5 + \sqrt 2 + \sqrt {10} $$
B. $$1 + \sqrt 5 + \sqrt 2 - \sqrt {10} $$
C. $$1 + \sqrt 5 - \sqrt 2 + \sqrt {10} $$
D. $$1 - \sqrt 5 - \sqrt 2 + \sqrt {10} $$
Releted Question 3

If $${x_1},{x_2},.....,{x_n}$$    are any real numbers and $$n$$ is any positive integer, then

A. $$n\sum\limits_{i = 1}^n {{x_i}^2 < {{\left( {\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} $$
B. $$\sum\limits_{i = 1}^n {{x_i}^2 \geqslant {{\left( {\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} $$
C. $$\sum\limits_{i = 1}^n {{x_i}^2 \geqslant n{{\left( {\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} $$
D. none of these
Releted Question 4

Let $$S$$ = {1, 2, 3, 4}. The total number of unordered pairs of disjoint subsets of $$S$$ is equal to

A. 25
B. 34
C. 42
D. 41

Practice More Releted MCQ Question on
Sets and Relations


Practice More MCQ Question on Maths Section