Question

Let $$R = \left\{ {\left( {x,\,y} \right):x,\,y\, \in \,N{\text{ and }}{x^2} - 4xy + 3{y^2} = 0} \right\},$$           where $$N$$ is the set of all natural numbers. Then the relation $$R$$ is :

A. reflexive but neither symmetric nor transitive
B. symmetric and transitive
C. reflexive and symmetric
D. reflexive and transitive  
Answer :   reflexive and transitive
Solution :
$$\eqalign{ & R = \left\{ {\left( {x,\,y} \right):x,\,y\, \in \,N{\text{ and }}{x^2} - 4xy + 3{y^2} = 0} \right\}, \cr & {\text{Now, }}{x^2} - 4xy + 3{y^2} = 0\,\,\, \Rightarrow \left( {x - y} \right)\left( {x - 3y} \right) = 0 \cr & \therefore \,x = y{\text{ or }}x = 3y \cr & \therefore \,R = \left\{ {\left( {1,\,1} \right),\,\left( {3,\,1} \right),\,\left( {2,\,2} \right),\,\left( {6,\,2} \right),\,\left( {3,\,3} \right),\,\left( {9,\,3} \right),.....} \right\} \cr} $$
Since $$\left( {1,\,1} \right),\,\left( {2,\,2} \right),\,\left( {3,\,3} \right),.....$$       are present in the relation, therefore $$R$$ is reflexive.
Since $$\left( {3,\,1} \right)$$  is an element of $$R$$ but $$\left( {1,\,3} \right)$$  is not the element of $$R$$ is not symmetric.
$$\eqalign{ & {\text{Here }}\left( {3,\,1} \right)\, \in \,R{\text{ and }}\left( {1,\,1} \right)\, \in \,R\, \Rightarrow \left( {3,\,1} \right)\, \in \,R \cr & \left( {6,\,2} \right)\, \in \,R{\text{ and }}\left( {2,\,2} \right)\, \in \,R\, \Rightarrow \left( {6,\,2} \right)\, \in \,R \cr & {\text{For all such }}\left( {a,\,b} \right)\, \in \,R{\text{ and }}\left( {b,\,c} \right)\, \in \,R \Rightarrow \left( {a,\,c} \right)\, \in \,R \cr & {\text{Hence }}R{\text{ is transitive}}{\text{.}} \cr} $$

Releted MCQ Question on
Calculus >> Sets and Relations

Releted Question 1

If $$X$$ and $$Y$$ are two sets, then $$X \cap {\left( {X \cup Y} \right)^c}$$   equals.

A. $$X$$
B. $$Y$$
C. $$\phi $$
D. None of these
Releted Question 2

The expression $$\frac{{12}}{{3 + \sqrt 5 + 2\sqrt 2 }}$$    is equal to

A. $$1 - \sqrt 5 + \sqrt 2 + \sqrt {10} $$
B. $$1 + \sqrt 5 + \sqrt 2 - \sqrt {10} $$
C. $$1 + \sqrt 5 - \sqrt 2 + \sqrt {10} $$
D. $$1 - \sqrt 5 - \sqrt 2 + \sqrt {10} $$
Releted Question 3

If $${x_1},{x_2},.....,{x_n}$$    are any real numbers and $$n$$ is any positive integer, then

A. $$n\sum\limits_{i = 1}^n {{x_i}^2 < {{\left( {\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} $$
B. $$\sum\limits_{i = 1}^n {{x_i}^2 \geqslant {{\left( {\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} $$
C. $$\sum\limits_{i = 1}^n {{x_i}^2 \geqslant n{{\left( {\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} $$
D. none of these
Releted Question 4

Let $$S$$ = {1, 2, 3, 4}. The total number of unordered pairs of disjoint subsets of $$S$$ is equal to

A. 25
B. 34
C. 42
D. 41

Practice More Releted MCQ Question on
Sets and Relations


Practice More MCQ Question on Maths Section