Question
Let r be a relation over the set $$N \times N$$ and it is defined by $$\left( {a,\,b} \right)\,r\,\left( {c,\,d} \right) \Rightarrow a + d = b + c.$$ Then $$r$$ is :
A.
reflexive only
B.
symmetric only
C.
transitive only
D.
an equivalence relation
Answer :
an equivalence relation
Solution :
$$\left( {a,\,b} \right)\,r\,\left( {a,\,b} \right)$$ because $$a+b=b+a.$$
So, $$r$$ is reflexive.
$$\left( {a,\,b} \right)\,r\,\left( {c,\,d} \right) \Rightarrow a + d = b + c \Rightarrow c + b = d + a \Rightarrow \left( {c,\,d} \right)\,r\,\left( {a,\,b} \right)$$
So, $$r$$ is symmetric.
$$\left( {a,\,b} \right)\,r\,\left( {c,\,d} \right)$$ and $$\left( {c,\,d} \right)\,r\,\left( {e,\,f} \right) \Rightarrow a + d = b + c,\,\,c + f = d + e$$
Adding, $$a + d + c + f = b + c + d + e \Rightarrow a + f = b + e \Rightarrow \left( {a,\,b} \right)\,r\,\left( {e,\,f} \right)$$
$$\therefore \,r$$ is transitive.