Question

Let r be a relation over the set $$N \times N$$  and it is defined by $$\left( {a,\,b} \right)\,r\,\left( {c,\,d} \right) \Rightarrow a + d = b + c.$$       Then $$r$$ is :

A. reflexive only
B. symmetric only
C. transitive only
D. an equivalence relation  
Answer :   an equivalence relation
Solution :
$$\left( {a,\,b} \right)\,r\,\left( {a,\,b} \right)$$   because $$a+b=b+a.$$
So, $$r$$ is reflexive.
$$\left( {a,\,b} \right)\,r\,\left( {c,\,d} \right) \Rightarrow a + d = b + c \Rightarrow c + b = d + a \Rightarrow \left( {c,\,d} \right)\,r\,\left( {a,\,b} \right)$$
So, $$r$$ is symmetric.
$$\left( {a,\,b} \right)\,r\,\left( {c,\,d} \right)$$    and $$\left( {c,\,d} \right)\,r\,\left( {e,\,f} \right) \Rightarrow a + d = b + c,\,\,c + f = d + e$$
Adding, $$a + d + c + f = b + c + d + e \Rightarrow a + f = b + e \Rightarrow \left( {a,\,b} \right)\,r\,\left( {e,\,f} \right)$$
$$\therefore \,r$$  is transitive.

Releted MCQ Question on
Calculus >> Sets and Relations

Releted Question 1

If $$X$$ and $$Y$$ are two sets, then $$X \cap {\left( {X \cup Y} \right)^c}$$   equals.

A. $$X$$
B. $$Y$$
C. $$\phi $$
D. None of these
Releted Question 2

The expression $$\frac{{12}}{{3 + \sqrt 5 + 2\sqrt 2 }}$$    is equal to

A. $$1 - \sqrt 5 + \sqrt 2 + \sqrt {10} $$
B. $$1 + \sqrt 5 + \sqrt 2 - \sqrt {10} $$
C. $$1 + \sqrt 5 - \sqrt 2 + \sqrt {10} $$
D. $$1 - \sqrt 5 - \sqrt 2 + \sqrt {10} $$
Releted Question 3

If $${x_1},{x_2},.....,{x_n}$$    are any real numbers and $$n$$ is any positive integer, then

A. $$n\sum\limits_{i = 1}^n {{x_i}^2 < {{\left( {\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} $$
B. $$\sum\limits_{i = 1}^n {{x_i}^2 \geqslant {{\left( {\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} $$
C. $$\sum\limits_{i = 1}^n {{x_i}^2 \geqslant n{{\left( {\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} $$
D. none of these
Releted Question 4

Let $$S$$ = {1, 2, 3, 4}. The total number of unordered pairs of disjoint subsets of $$S$$ is equal to

A. 25
B. 34
C. 42
D. 41

Practice More Releted MCQ Question on
Sets and Relations


Practice More MCQ Question on Maths Section