Question

Let $$R$$ be a relation on $${\bf{N}} \times {\bf{N}}$$  defined by $$\left( {a,\,b} \right)R\left( {c,\,d} \right) \Rightarrow ad\left( {b + c} \right) = bc\left( {a + d} \right).\,R$$         is :

A. a particle order relation
B. an equivalence relation  
C. an identity relation
D. none of these
Answer :   an equivalence relation
Solution :
We observe the following properties :
Reflexivity : Let $$\left( {a,\,b} \right)$$  be an arbitrary element of $${\bf{N}} \times {\bf{N}}$$
$$\eqalign{ & {\text{Then, }}\left( {a,\,b} \right) \in \,{\bf{N}} \times {\bf{N}} \Rightarrow a,\,b\, \in \,{\bf{N}} \cr & \Rightarrow ab\left( {b + a} \right) = ba\left( {a + b} \right) \Rightarrow \left( {a,\,b} \right)R\left( {a,\,b} \right) \cr & {\text{Thus, }}\left( {a,\,b} \right)R\left( {a,\,b} \right){\text{ for all }}\left( {a,\,b} \right) \in \,{\bf{N}} \times {\bf{N}} \cr} $$
So, $$R$$ is reflexive on $${\bf{N}} \times {\bf{N}}$$
Symmetry : Let $$\left( {a,\,b} \right),\,\left( {c,\,d} \right)\, \in \,{\bf{N}} \times {\bf{N}}$$      be such that $$\left( {a,\,b} \right)R\left( {c,\,d} \right).$$
$$\eqalign{ & {\text{Then, }}\left( {a,\,b} \right)R\left( {c,\,d} \right)\, \cr & \Rightarrow ad\left( {b + c} \right) = bc\left( {a + d} \right) \cr & \Rightarrow cb\left( {d + a} \right) = da\left( {c + b} \right) \cr & \Rightarrow \left( {c,\,d} \right)R\left( {a,\,b} \right) \cr & {\text{Thus, }}\left( {a,\,b} \right)R\left( {c,\,d} \right) \cr & \Rightarrow \left( {c,\,d} \right)R\left( {a,\,b} \right){\text{ for all }}\left( {a,\,b} \right)\left( {c,\,d} \right)\, \in \,{\bf{N}} \times {\bf{N}} \cr} $$
So, $$R$$ is symmetric on $${\bf{N}} \times {\bf{N}}$$
Transitivity : Let $$\left( {a,\,b} \right),\,\left( {c,\,d} \right),\,\left( {e,\,f} \right)\, \in \,{\bf{N}} \times {\bf{N}}$$       such that $$\left( {a,\,b} \right)R\left( {c,\,d} \right){\text{ and }}\left( {c,\,d} \right)R\left( {e,\,f} \right)$$
$$\eqalign{ & {\text{Then, }}\left( {a,\,b} \right)R\left( {c,\,d} \right)\, \cr & \Rightarrow ad\left( {b + c} \right) = bc\left( {a + d} \right) \cr & \Rightarrow \frac{{b + c}}{{bc}} = \frac{{a + d}}{{ad}} \cr & \Rightarrow \frac{1}{b} + \frac{1}{c} = \frac{1}{a} + \frac{1}{d}.......({\text{i}}) \cr & {\text{and, }}\left( {c,\,d} \right)R\left( {e,\,f} \right) \Rightarrow cf\left( {d + e} \right) = de\left( {c + f} \right) \cr & \Rightarrow \frac{{d + e}}{{de}} = \frac{{c + f}}{{cf}} \cr & \Rightarrow \frac{1}{d} + \frac{1}{e} = \frac{1}{c} + \frac{1}{f}.......({\text{ii}}) \cr & {\text{Adding (i) and (ii), we get}} \cr & \left( {\frac{1}{b} + \frac{1}{c}} \right) + \left( {\frac{1}{d} + \frac{1}{e}} \right) = \left( {\frac{1}{a} + \frac{1}{d}} \right) + \left( {\frac{1}{c} + \frac{1}{f}} \right) \cr & \Rightarrow \frac{1}{b} + \frac{1}{e} = \frac{1}{a} + \frac{1}{f} \cr & \Rightarrow \frac{{b + e}}{{be}} = \frac{{a + f}}{{af}} \cr & \Rightarrow af\left( {b + e} \right) = be\left( {a + f} \right) \cr & \Rightarrow \left( {a,\,b} \right)R\left( {e,\,f} \right) \cr & {\text{Thus, }}\left( {a,\,b} \right)R\left( {c,\,d} \right){\text{ and }}\left( {c,\,d} \right)R\left( {e,\,f} \right) \cr & \Rightarrow \left( {a,\,b} \right)R\left( {e,\,f} \right){\text{ for all }}\left( {a,\,b} \right),\,\left( {c,\,d} \right),\,\left( {e,\,f} \right)\, \in \,{\bf{N}} \times {\bf{N}} \cr} $$
So, $$R$$ is transitive on $${\bf{N}} \times {\bf{N}}.$$
Hence, $$R$$ being reflexive, symmetric and transitive, is an equivalence relation on $${\bf{N}} \times {\bf{N}}.$$

Releted MCQ Question on
Calculus >> Sets and Relations

Releted Question 1

If $$X$$ and $$Y$$ are two sets, then $$X \cap {\left( {X \cup Y} \right)^c}$$   equals.

A. $$X$$
B. $$Y$$
C. $$\phi $$
D. None of these
Releted Question 2

The expression $$\frac{{12}}{{3 + \sqrt 5 + 2\sqrt 2 }}$$    is equal to

A. $$1 - \sqrt 5 + \sqrt 2 + \sqrt {10} $$
B. $$1 + \sqrt 5 + \sqrt 2 - \sqrt {10} $$
C. $$1 + \sqrt 5 - \sqrt 2 + \sqrt {10} $$
D. $$1 - \sqrt 5 - \sqrt 2 + \sqrt {10} $$
Releted Question 3

If $${x_1},{x_2},.....,{x_n}$$    are any real numbers and $$n$$ is any positive integer, then

A. $$n\sum\limits_{i = 1}^n {{x_i}^2 < {{\left( {\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} $$
B. $$\sum\limits_{i = 1}^n {{x_i}^2 \geqslant {{\left( {\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} $$
C. $$\sum\limits_{i = 1}^n {{x_i}^2 \geqslant n{{\left( {\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} $$
D. none of these
Releted Question 4

Let $$S$$ = {1, 2, 3, 4}. The total number of unordered pairs of disjoint subsets of $$S$$ is equal to

A. 25
B. 34
C. 42
D. 41

Practice More Releted MCQ Question on
Sets and Relations


Practice More MCQ Question on Maths Section