Question

Let $$R$$ and $$S$$ be two non-void relations in a set $$A.$$ Which of the following statements is not true ?

A. $$R$$ and $$S$$ transitive $$ \Rightarrow \,R \cup S$$   is transitive  
B. $$R$$ and $$S$$ transitive $$ \Rightarrow \,R \cap S$$   is transitive
C. $$R$$ and $$S$$ symmetric $$ \Rightarrow \,R \cup S$$   is symmetric
D. $$R$$ and $$S$$ reflexive $$ \Rightarrow \,R \cap S$$   is reflexive
Answer :   $$R$$ and $$S$$ transitive $$ \Rightarrow \,R \cup S$$   is transitive
Solution :
$$\eqalign{ & \left( {\bf{A}} \right){\text{Let }}\left( {a,\,b} \right),\,\left( {b,\,c} \right)\, \in \,R \cup S \cr & {\text{It is possible that }}\left( {a,\,b} \right)\, \in R - S{\text{ and }}\left( {b,\,c} \right)\, \in S - R \cr & {\text{In such case, we cannot say that }}\left( {a,\,c} \right)\, \in R\,\,{\text{or }}\left( {a,\,c} \right)\, \in S \cr & \therefore \,\left( {a,\,c} \right){\text{ may not be in }}R \cup S \cr & \therefore \,R \cup S{\text{ in not transitive}}{\text{.}} \cr & \left( {\bf{B}} \right){\text{Let }}\left( {a,\,b} \right),\,\left( {b,\,c} \right)\, \in \,R \cap S \cr & \therefore \,\left( {a,\,b} \right),\,\left( {b,\,c} \right)\, \in R{\text{ and }}\left( {a,\,b} \right),\,\left( {b,\,c} \right)\, \in S \cr & \therefore \,\left( {a,\,c} \right)\, \in R\,\,{\text{and }}\left( {a,\,c} \right)\, \in S \cr & \therefore \,\left( {a,\,c} \right){\text{ }} \in \,{\text{ }}R \cap S \cr & \therefore \,R \cap S{\text{ in transitive}}{\text{.}} \cr & \left( {\bf{C}} \right){\text{Let }}\left( {a,\,b} \right)\, \in \,R \cup S \cr & \therefore \,\left( {a,\,b} \right)\, \in R{\text{ or }}\left( {a,\,b} \right)\, \in S \cr & {\text{Now, }}\left( {a,\,b} \right)\, \in R \Rightarrow \left( {b,\,a} \right)\, \in R\,\,\,\left( {\because \,R{\text{ is symmetric}}} \right) \cr & \left( {a,\,b} \right)\, \in \,S \Rightarrow \left( {b,\,a} \right)\, \in \,S\,\,\,\left( {\because \,S{\text{ is symmetric}}} \right) \cr & \therefore \,\left( {b,\,a} \right)\, \in \,R \cup S \cr & \therefore \,R \cup S{\text{ is symmetric}}{\text{.}} \cr & \left( {\bf{D}} \right){\text{ Let }}a\, \in \,A \cr & \therefore \,\left( {a,\,a} \right)\, \in \,R\,{\text{and}}\left( {a,\,a} \right)\, \in S \cr & \therefore \,\left( {a,\,a} \right)\, \in \,R \cap S \cr & \therefore \,R \cap S{\text{ in reflexive}}{\text{.}} \cr} $$

Releted MCQ Question on
Calculus >> Sets and Relations

Releted Question 1

If $$X$$ and $$Y$$ are two sets, then $$X \cap {\left( {X \cup Y} \right)^c}$$   equals.

A. $$X$$
B. $$Y$$
C. $$\phi $$
D. None of these
Releted Question 2

The expression $$\frac{{12}}{{3 + \sqrt 5 + 2\sqrt 2 }}$$    is equal to

A. $$1 - \sqrt 5 + \sqrt 2 + \sqrt {10} $$
B. $$1 + \sqrt 5 + \sqrt 2 - \sqrt {10} $$
C. $$1 + \sqrt 5 - \sqrt 2 + \sqrt {10} $$
D. $$1 - \sqrt 5 - \sqrt 2 + \sqrt {10} $$
Releted Question 3

If $${x_1},{x_2},.....,{x_n}$$    are any real numbers and $$n$$ is any positive integer, then

A. $$n\sum\limits_{i = 1}^n {{x_i}^2 < {{\left( {\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} $$
B. $$\sum\limits_{i = 1}^n {{x_i}^2 \geqslant {{\left( {\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} $$
C. $$\sum\limits_{i = 1}^n {{x_i}^2 \geqslant n{{\left( {\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} $$
D. none of these
Releted Question 4

Let $$S$$ = {1, 2, 3, 4}. The total number of unordered pairs of disjoint subsets of $$S$$ is equal to

A. 25
B. 34
C. 42
D. 41

Practice More Releted MCQ Question on
Sets and Relations


Practice More MCQ Question on Maths Section