Question

Let $$\overrightarrow p ,\,\overrightarrow q ,\,\overrightarrow r $$   be three mutually perpendicular vectors of the same magnitude. If a vector $$\overrightarrow x $$ satisfies the equation $$\overrightarrow p \times \left\{ {\left( {\overrightarrow x - \overrightarrow q } \right) \times \overrightarrow p } \right\} + \overrightarrow q \times \left\{ {\left( {\overrightarrow x - \overrightarrow r } \right) \times \overrightarrow q } \right\} + \overrightarrow r \left\{ {\left( {\overrightarrow x - \overrightarrow p } \right) \times \overrightarrow r } \right\} = \overrightarrow 0 $$                then $$\overrightarrow x $$ is given by :

A. $$\frac{1}{2}\left( {\overrightarrow p + \overrightarrow q - 2\overrightarrow r } \right)$$
B. $$\frac{1}{2}\left( {\overrightarrow p + \overrightarrow q + \overrightarrow r } \right)$$  
C. $$\frac{1}{3}\left( {\overrightarrow p + \overrightarrow q + \overrightarrow r } \right)$$
D. $$\frac{1}{3}\left( {2\overrightarrow p + \overrightarrow q + \overrightarrow r } \right)$$
Answer :   $$\frac{1}{2}\left( {\overrightarrow p + \overrightarrow q + \overrightarrow r } \right)$$
Solution :
$$\eqalign{ & {\text{Here }}\left( {\overrightarrow p .\overrightarrow p } \right)\left( {\overrightarrow x - \overrightarrow q } \right) - \left\{ {\overrightarrow p .\left( {\overrightarrow x - \overrightarrow q } \right)} \right\}\overrightarrow p + \left( {\overrightarrow q .\overrightarrow q } \right)\left( {\overrightarrow x - \overrightarrow r } \right) - \left\{ {\overrightarrow q .\left( {\overrightarrow x - \overrightarrow r } \right)} \right\}\overrightarrow q + \left( {\overrightarrow r .\overrightarrow r } \right)\left( {\overrightarrow x - \overrightarrow p } \right) - \left\{ {\overrightarrow r .\left( {\overrightarrow x - \overrightarrow p } \right)} \right\}\overrightarrow r = 0 \cr & {\text{or }}{\lambda ^2}\left( {\overrightarrow x - \overrightarrow q + \overrightarrow x - \overrightarrow r + \overrightarrow x - \overrightarrow p } \right) = \left\{ {\overrightarrow p .\left( {\overrightarrow x - \overrightarrow q } \right)} \right\}\overrightarrow p + \left\{ {\overrightarrow q .\left( {\overrightarrow x - \overrightarrow r } \right)} \right\}\overrightarrow q + \left\{ {\overrightarrow r .\left( {\overrightarrow x - \overrightarrow p } \right)} \right\}\overrightarrow r , \cr & {\text{where }}\left| {\overrightarrow p } \right| = \left| {\overrightarrow q } \right| = \left| {\overrightarrow r } \right| = \lambda \cr & {\text{or }}{\lambda ^2}\left\{ {3\overrightarrow x - \left( {\overrightarrow p + \overrightarrow q + \overrightarrow r } \right)} \right\} = \left( {\overrightarrow p .\overrightarrow x } \right)\overrightarrow p + \left( {\overrightarrow q .\overrightarrow x } \right)\overrightarrow q + \left( {\overrightarrow r .\overrightarrow x } \right)\overrightarrow r , \cr & {\text{because }}\overrightarrow p ,\,\overrightarrow q ,\,\overrightarrow r {\text{ are mutually perpendicular}}{\text{.}} \cr & {\text{Let }}\overrightarrow x = \alpha \overrightarrow p + \beta \overrightarrow q + \gamma \overrightarrow r {\text{. Then}} \cr & \,\,\,\,\,\,\,\,\,\,\,\overrightarrow p .\overrightarrow x = \alpha {\left| {\overrightarrow p } \right|^2} = \alpha {\lambda ^2},\,\overrightarrow q .\overrightarrow x = \beta {\left| {\overrightarrow q } \right|^2} = \beta {\lambda ^2} \cr & \,\,\,\,\,\,\,\,\,\,\,\overrightarrow r .\overrightarrow x = \gamma {\left| {\overrightarrow r } \right|^2} = \gamma {\lambda ^2} \cr & \therefore \,{\lambda ^2}\left\{ {3\overrightarrow x - \left( {\overrightarrow p + \overrightarrow q + \overrightarrow r } \right)} \right\} = {\lambda ^2}\overrightarrow x \,\,\,\,{\text{or }}3\overrightarrow x - \left( {\overrightarrow p + \overrightarrow q + \overrightarrow r } \right) = \overrightarrow x \cr} $$

Releted MCQ Question on
Geometry >> 3D Geometry and Vectors

Releted Question 1

The scalar $$\vec A.\left( {\vec B + \vec C} \right) \times \left( {\vec A + \vec B + \vec C} \right)$$      equals :

A. $$0$$
B. $$\left[ {\vec A\,\vec B\,\vec C} \right] + \left[ {\vec B\,\vec C\,\vec A} \right]$$
C. $$\left[ {\vec A\,\vec B\,\vec C} \right]$$
D. None of these
Releted Question 2

For non-zero vectors $$\vec a,\,\vec b,\,\vec c,\,\left| {\left( {\vec a \times \vec b} \right).\vec c} \right| = \left| {\vec a} \right|\left| {\vec b} \right|\left| {\vec c} \right|$$       holds if and only if -

A. $$\vec a.\vec b = 0,\,\,\,\vec b.\vec c = 0$$
B. $$\vec b.\vec c = 0,\,\,\,\vec c.\vec a = 0$$
C. $$\vec c.\vec a = 0,\,\,\,\vec a.\vec b = 0$$
D. $$\vec a.\vec b = \vec b.\vec c = \vec c.\vec a = 0$$
Releted Question 3

The volume of the parallelepiped whose sides are given by $$\overrightarrow {OA} = 2i - 2j,\,\,\overrightarrow {OB} = i + j - k,\,\,\overrightarrow {OC} = 3i - k,$$         is :

A. $$\frac{4}{{13}}$$
B. $$4$$
C. $$\frac{2}{7}$$
D. none of these
Releted Question 4

The points with position vectors $$60i + 3j,\,\,40i - 8j,\,\,ai - 52j$$      are collinear if :

A. $$a = - 40$$
B. $$a = 40$$
C. $$a = 20$$
D. none of these

Practice More Releted MCQ Question on
3D Geometry and Vectors


Practice More MCQ Question on Maths Section