Question

Let $$P$$ be the point $$\left( {1,\,0} \right)$$  and $$Q$$ a point on the locus $${y^2} = 8x.$$   The locus of mid point of $$PQ$$  is :

A. $${y^2} - 4x + 2 = 0$$  
B. $${y^2} + 4x + 2 = 0$$
C. $${x^2} + 4y + 2 = 0$$
D. $${x^2} - 4y + 2 = 0$$
Answer :   $${y^2} - 4x + 2 = 0$$
Solution :
$$P = \left( {1,\,0} \right)\,\,Q = \left( {h,\,k} \right)$$     Such that $${K^2} = 8h$$
Let $$\left( {\alpha ,\,\beta } \right)$$  be the midpoint of $$PQ$$
$$\eqalign{ & \alpha = \frac{{h + 1}}{2},\,\,\,\,\,\,\,\,\,\,\beta = \frac{{k + 0}}{2}\, \cr & 2\alpha - 1 = h\,\,\,\,\,\,\,\,\,\,2\beta = k \cr & {\left( {2\beta } \right)^2} = 8\left( {2\alpha - 1} \right)\,\, \Rightarrow {\beta ^2} = 4\alpha - 2 \cr & \Rightarrow {y^2} - 4x + 2 = 0 \cr} $$

Releted MCQ Question on
Geometry >> Locus

Releted Question 1

The equation $$\frac{{{x^2}}}{{1 - r}} - \frac{{{y^2}}}{{1 + r}} = 1,\,\,\,r > 1$$       represents :

A. an ellipse
B. a hyperbola
C. a circle
D. none of these
Releted Question 2

The equation $$2{x^2} + 3{y^2} - 8x - 18y + 35 = k$$       represents :

A. no locus if $$k>0$$
B. an ellipse if $$k<0$$
C. a point if $$k=0$$
D. a hyperbola if $$k>0$$
Releted Question 3

If $$a>2b>0$$    then the positive value of $$m$$ for which $$y = mx - b\sqrt {1 + {m^2}} $$     is a common tangent to $${x^2} + {y^2} = {b^2}$$   and $${\left( {x - a} \right)^2} + {y^2} = {b^2}$$    is :

A. $$\frac{{2b}}{{\sqrt {{a^2} - 4{b^2}} }}$$
B. $$\frac{{\sqrt {{a^2} - 4{b^2}} }}{{2b}}$$
C. $$\frac{{2b}}{{a - 2b}}$$
D. $$\frac{b}{{a - 2b}}$$
Releted Question 4

The locus of the mid-point of the line segment joining the focus to a moving point on the parabola $${y^2} = 4ax$$   is another parabola with directrix :

A. $$x = - a$$
B. $$x = - \frac{a}{2}$$
C. $$x = 0$$
D. $$x = \frac{a}{2}$$

Practice More Releted MCQ Question on
Locus


Practice More MCQ Question on Maths Section