Question

Let $$p = a\cos \theta - b\sin \theta .$$    Then for all real $$\theta $$

A. $$p > \sqrt {{a^2} + {b^2}} $$
B. $$p < - \sqrt {{a^2} + {b^2}} $$
C. $$ - \sqrt {{a^2} + {b^2}} \leqslant p \leqslant \sqrt {{a^2} + {b^2}} $$  
D. None of these
Answer :   $$ - \sqrt {{a^2} + {b^2}} \leqslant p \leqslant \sqrt {{a^2} + {b^2}} $$
Solution :
$$\eqalign{ & p = \sqrt {{a^2} + {b^2}} \left\{ {\frac{a}{{\sqrt {{a^2} + {b^2}} }}\cos \theta - \frac{b}{{\sqrt {{a^2} + {b^2}} }}\sin \theta } \right\} \cr & p = \sqrt {{a^2} + {b^2}} \cos \left( {\theta + \alpha } \right),\,\,{\text{where }}\cos \alpha = \frac{a}{{\sqrt {{a^2} + {b^2}} }}. \cr & {\text{But }} - 1 \leqslant \cos \left( {\theta + \alpha } \right) \leqslant 1. \cr} $$

Releted MCQ Question on
Trigonometry >> Trigonometric Ratio and Identities

Releted Question 1

If $$\tan \theta = - \frac{4}{3},$$   then $$\sin \theta $$  is

A. $$ - \frac{4}{5}{\text{ but not }}\frac{4}{5}$$
B. $$ - \frac{4}{5}{\text{ or }}\frac{4}{5}$$
C. $$ \frac{4}{5}{\text{ but not }} - \frac{4}{5}$$
D. None of these
Releted Question 2

If $$\alpha + \beta + \gamma = 2\pi ,$$    then

A. $$\tan \frac{\alpha }{2} + \tan \frac{ \beta }{2} + \tan \frac{\gamma }{2} = \tan \frac{\alpha }{2}\tan \frac{\beta }{2}\tan \frac{\gamma }{2}$$
B. $$\tan \frac{\alpha }{2}\tan \frac{\beta }{2} + \tan \frac{\beta }{2}\tan \frac{\gamma }{2} + \tan \frac{\gamma }{2}\tan \frac{\alpha }{2} = 1$$
C. $$\tan \frac{\alpha }{2} + \tan \frac{ \beta }{2} + \tan \frac{\gamma }{2} = - \tan \frac{\alpha }{2}\tan \frac{\beta }{2}\tan \frac{\gamma }{2}$$
D. None of these
Releted Question 3

Given $$A = {\sin ^2}\theta + {\cos ^4}\theta $$    then for all real values of $$\theta $$

A. $$1 \leqslant A \leqslant 2$$
B. $$\frac{3}{4} \leqslant A \leqslant 1$$
C. $$\frac{13}{16} \leqslant A \leqslant 1$$
D. $$\frac{3}{4} \leqslant A \leqslant \frac{{13}}{{16}}$$
Releted Question 4

The value of the expression $$\sqrt 3 \,{\text{cosec}}\,{\text{2}}{{\text{0}}^ \circ } - \sec {20^ \circ }$$     is equal to

A. 2
B. $$\frac{{2\sin {{20}^ \circ }}}{{\sin {{40}^ \circ }}}$$
C. 4
D. $$\frac{{4\sin {{20}^ \circ }}}{{\sin {{40}^ \circ }}}$$

Practice More Releted MCQ Question on
Trigonometric Ratio and Identities


Practice More MCQ Question on Maths Section