Solution :
         
$$\eqalign{
  & {\text{Here, }}\left| {0 - {z_1}} \right|\left| {0 - z} \right| = 1.  \cr 
  & \therefore \,\,\left| {{z_1}} \right|\left| z \right| = 1  \cr 
  & \therefore \,\,\left| {{z_1}} \right| = \frac{1}{{\left| z \right|}}.  \cr 
  & {\text{Also, amp}}\frac{{{z_1} - 0}}{{z - 0}} = 0\,\,\,\,\,\therefore \,\,{\text{amp}}\frac{{{z_1}}}{z} = 0\,\,\,\,\therefore \,\,{\text{amp}}\,{z_1} = {\text{amp }}z.  \cr 
  & \therefore \,\,{z_1} = \frac{1}{{\left| z \right|}}\left\{ {\cos \left( {{\text{amp }}{z_1}} \right) + i\sin \left( {{\text{amp }}{z_1}} \right)} \right\}  \cr 
  & {z_1} = \frac{1}{{{{\left| z \right|}^2}}} \cdot \left| z \right|\left\{ {\cos \left( {{\text{amp }}z} \right) + i\sin \left( {{\text{amp }}z} \right)} \right\}  \cr 
  & {z_1} = \frac{1}{{{{\left| z \right|}^2}}} \cdot z = \frac{z}{{z\overline z }} = \frac{1}{{\overline z }}. \cr} $$