Question

Let $$n \in N$$  and $$n < {\left( {\sqrt 2 + 1} \right)^6}.$$   Then the greatest value of $$n$$ is

A. 199
B. 198
C. 197  
D. 196
Answer :   197
Solution :
$$\eqalign{ & {\left( {\sqrt 2 + 1} \right)^6} = P + g = {\,^6}{C_0}{\left( {\sqrt 2 } \right)^6} + {\,^6}{C_1}{\left( {\sqrt 2 } \right)^5} + ..... + {\,^6}{C_6},\,{\text{where }}P = {\text{integer, }}0 < g < 1. \cr & {\left( {\sqrt 2 - 1} \right)^6} = f = {\,^6}{C_0}{\left( {\sqrt 2 } \right)^6} - {\,^6}{C_1}{\left( {\sqrt 2 } \right)^5} + .....,0 < f < 1 \cr & \therefore \,\,P + f + g = 2\left\{ {^6{C_0} \cdot {2^3} + {\,^6}{C_2} \cdot {2^2} + {\,^6}{C_4} \cdot 2 + {\,^6}{C_6}} \right\} \cr & P + f + g = 2\left( {8 + 15 \times 4 + 15 \times 2 + 1} \right) = 198 \cr & \therefore \,\,197 < P + g < 198 \cr & \therefore \,\,197 < {\left( {\sqrt 2 + 1} \right)^6} < 198 \cr & \therefore \,\,n < {\left( {\sqrt 2 + 1} \right)^6} \cr} $$
⇒ the greatest value of the natural number $$n = 197.$$

Releted MCQ Question on
Algebra >> Binomial Theorem

Releted Question 1

Given positive integers $$r > 1, n > 2$$   and that the co - efficient of $${\left( {3r} \right)^{th}}\,{\text{and }}{\left( {r + 2} \right)^{th}}$$    terms in the binomial expansion of $${\left( {1 + x} \right)^{2n}}$$  are equal. Then

A. $$n = 2r$$
B. $$n = 2r + 1$$
C. $$n = 3r$$
D. none of these
Releted Question 2

The co-efficient of $${x^4}$$ in $${\left( {\frac{x}{2} - \frac{3}{{{x^2}}}} \right)^{10}}$$   is

A. $$\frac{{405}}{{256}}$$
B. $$\frac{{504}}{{259}}$$
C. $$\frac{{450}}{{263}}$$
D. none of these
Releted Question 3

The expression $${\left( {x + {{\left( {{x^3} - 1} \right)}^{\frac{1}{2}}}} \right)^5} + {\left( {x - {{\left( {{x^3} - 1} \right)}^{\frac{1}{2}}}} \right)^5}$$       is a polynomial of degree

A. 5
B. 6
C. 7
D. 8
Releted Question 4

If in the expansion of $${\left( {1 + x} \right)^m}{\left( {1 - x} \right)^n},$$    the co-efficients of $$x$$ and $${x^2}$$ are $$3$$ and $$- 6\,$$ respectively, then $$m$$ is

A. 6
B. 9
C. 12
D. 24

Practice More Releted MCQ Question on
Binomial Theorem


Practice More MCQ Question on Maths Section