Question

Let $$N$$ be the set of non-negative integers, $$I$$ the set of integers, $${N_p}$$ the set of non-positive integers, $$E$$ the set of even integers and $$P$$ the set of prime numbers. Then :

A. $$I - N = {N_p}$$
B. $$N \cap {N_p} = \phi $$
C. $$E \cap P = \phi $$
D. $$N\Delta {N_p} = I - \left\{ 0 \right\}$$  
Answer :   $$N\Delta {N_p} = I - \left\{ 0 \right\}$$
Solution :
$$\eqalign{ & N\Delta {N_p} = \left( {N - {N_p}} \right) \cup \left( {{N_p} - N} \right) \cr & = \left\{ {1,\,2,.....} \right\} \cup \left\{ {.....,\, - 2,\, - 1} \right\} \cr & = I - \left\{ 0 \right\} \cr} $$

Releted MCQ Question on
Calculus >> Sets and Relations

Releted Question 1

If $$X$$ and $$Y$$ are two sets, then $$X \cap {\left( {X \cup Y} \right)^c}$$   equals.

A. $$X$$
B. $$Y$$
C. $$\phi $$
D. None of these
Releted Question 2

The expression $$\frac{{12}}{{3 + \sqrt 5 + 2\sqrt 2 }}$$    is equal to

A. $$1 - \sqrt 5 + \sqrt 2 + \sqrt {10} $$
B. $$1 + \sqrt 5 + \sqrt 2 - \sqrt {10} $$
C. $$1 + \sqrt 5 - \sqrt 2 + \sqrt {10} $$
D. $$1 - \sqrt 5 - \sqrt 2 + \sqrt {10} $$
Releted Question 3

If $${x_1},{x_2},.....,{x_n}$$    are any real numbers and $$n$$ is any positive integer, then

A. $$n\sum\limits_{i = 1}^n {{x_i}^2 < {{\left( {\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} $$
B. $$\sum\limits_{i = 1}^n {{x_i}^2 \geqslant {{\left( {\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} $$
C. $$\sum\limits_{i = 1}^n {{x_i}^2 \geqslant n{{\left( {\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} $$
D. none of these
Releted Question 4

Let $$S$$ = {1, 2, 3, 4}. The total number of unordered pairs of disjoint subsets of $$S$$ is equal to

A. 25
B. 34
C. 42
D. 41

Practice More Releted MCQ Question on
Sets and Relations


Practice More MCQ Question on Maths Section