Question

Let $$n$$ be an odd natural number greater than 1. Then the number of zeros at the end of the sum $${99^n} + 1$$  is

A. 3
B. 4
C. 2  
D. None of these
Answer :   2
Solution :
$$\eqalign{ & 1 + {99^n} = 1 + {\left( {100 - 1} \right)^n} = 1 + \left\{ {^n{C_0}{{100}^n} - {\,^n}{C_1} \cdot {{100}^{n - 1}} + ..... - {\,^n}{C_n}} \right\}\,\,{\text{because }}n{\text{ is odd}} \cr & 1 + {99^n} = 100\left\{ {^n{C_0} \cdot {{100}^{n - 1}} - {\,^n}{C_1} \cdot {{100}^{n - 2}} + ..... - {\,^n}{C_{n - 2}} \cdot 100 + {\,^n}{C_{n - 1}}} \right\} \cr} $$
$$1 + {99^n} = 100 \times $$    integer whose units place is different from 0 ( $$n$$ having odd digit in units place).

Releted MCQ Question on
Algebra >> Binomial Theorem

Releted Question 1

Given positive integers $$r > 1, n > 2$$   and that the co - efficient of $${\left( {3r} \right)^{th}}\,{\text{and }}{\left( {r + 2} \right)^{th}}$$    terms in the binomial expansion of $${\left( {1 + x} \right)^{2n}}$$  are equal. Then

A. $$n = 2r$$
B. $$n = 2r + 1$$
C. $$n = 3r$$
D. none of these
Releted Question 2

The co-efficient of $${x^4}$$ in $${\left( {\frac{x}{2} - \frac{3}{{{x^2}}}} \right)^{10}}$$   is

A. $$\frac{{405}}{{256}}$$
B. $$\frac{{504}}{{259}}$$
C. $$\frac{{450}}{{263}}$$
D. none of these
Releted Question 3

The expression $${\left( {x + {{\left( {{x^3} - 1} \right)}^{\frac{1}{2}}}} \right)^5} + {\left( {x - {{\left( {{x^3} - 1} \right)}^{\frac{1}{2}}}} \right)^5}$$       is a polynomial of degree

A. 5
B. 6
C. 7
D. 8
Releted Question 4

If in the expansion of $${\left( {1 + x} \right)^m}{\left( {1 - x} \right)^n},$$    the co-efficients of $$x$$ and $${x^2}$$ are $$3$$ and $$- 6\,$$ respectively, then $$m$$ is

A. 6
B. 9
C. 12
D. 24

Practice More Releted MCQ Question on
Binomial Theorem


Practice More MCQ Question on Maths Section