Question
      
        Let \[M = \left[ \begin{array}{l}
\,\,\,{\sin ^4}\theta \,\,\,\,\,\,\,\,\,\,\, - 1 - {\sin ^2}\theta \\
1 + {\cos ^2}\theta \,\,\,\,\,\,\,\,\,\,\,\,\,\,{\cos ^4}\theta 
\end{array} \right] = \alpha I + \beta {M^{ - 1}}\]         Where $$\alpha  = \alpha \left( \theta  \right){\text{and }}\beta  = \beta \left( \theta  \right)$$     are real numbers, and $$I$$ is the $$2 \times 2$$  identity matrix. If $${a^*}$$ is the minimum of the set $$\left\{ {\alpha \left( \theta  \right):\theta  \in \left[ {0,2\pi } \right)} \right\}$$    and $${\beta ^*}$$ is the minimum of the set $$\left\{ {\beta \left( \theta  \right):\theta  \in \left[ {0,2\pi } \right)} \right\}.$$    Then the value of $${a^*} + {b^ * }$$  is                                                                                                                                                                                           
       A.
        $$ - \frac{{31}}{{16}}$$              
       B.
        $$ - \frac{{17}}{{16}}$$              
       C.
        $$ - \frac{{37}}{{16}}$$              
       D.
        $$ - \frac{{29}}{{16}}$$                 
              
            
                Answer :  
        $$ - \frac{{29}}{{16}}$$      
             Solution :
        \[M = \left[ \begin{array}{l}
\,\,{\sin ^4}\theta {\rm{      }} - 1\sin \theta \\
{\rm{1 + co}}{{\rm{s}}^2}\theta \,\,\,\,\,\,\,\,\,\,{\cos ^4}\theta 
\end{array} \right]\]
$$\eqalign{
  & \left| M \right| = {\sin ^4}\theta {\cos ^4}\theta  + 1 + {\sin ^2}\theta  + {\cos ^2}\theta  + {\sin ^2}\theta {\cos ^2}\theta   \cr 
  &  = 2 + {\sin ^2}\theta {\cos ^2}\theta  + {\sin ^4}\theta {\cos ^4}\theta  \cr} $$
\[{M^{ - 1}} = \frac{1}{{\left| M \right|}}\left[ \begin{array}{l}
\,\,\,{\cos ^4}\theta \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,1 + {\sin ^2}\theta \\
 - 1 - {\cos ^2}\theta \,\,\,\,\,\,\,\,\,\,\,{\sin ^4}\theta 
\end{array} \right]\]
$${\text{Given}}\,{\text{that}}\,M = \alpha I + \beta {M^{ - 1}}$$
\[ \Rightarrow \,\left[ \begin{array}{l}
\,\,\,{\sin ^4}\theta \,\,\,\,\,\,\,\,\, - 1 - {\sin ^2}\theta \\
1 + {\cos ^2}\theta \,\,\,\,\,\,\,\,{\cos ^4}\theta 
\end{array} \right] = \left[ \begin{array}{l}
\alpha\,\,\,\,\,0\\
0\,\,\,\,\,a
\end{array} \right] + \frac{\beta }{{\left| M \right|}}\left[ \begin{array}{l}
\,\,\,{\cos ^4}\theta \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,1 + {\sin ^2}\theta \\
 - 1 - {\cos ^2}\theta \,\,\,\,\,\,\,\,\,\,\,\,\,{\sin ^4}\theta 
\end{array} \right]\]
$$\eqalign{
  &  \Rightarrow \,\frac{\beta }{{\left| M \right|}} =  - 1\,{\text{and}}\,\alpha \, + \frac{\beta }{{\left| M \right|}}{\cos ^4}\theta  = {\sin ^4}\theta   \cr 
  &  \Rightarrow \,\alpha  = {\sin ^4}\theta  + {\cos ^4}\theta   \cr 
  &  \Rightarrow \,\beta  =  - \left[ {2 + {{\sin }^2}\theta {{\cos }^2}\theta  + {{\sin }^4}\theta {{\cos }^4}\theta } \right]  \cr 
  & {\text{Now,}}\, \alpha \, = {\left( {{{\sin }^2}\theta  + {{\cos }^2}\theta } \right)^2} - 2{\sin ^2}\theta {\cos ^2}\theta   \cr 
  &  = 1 - 2{\sin ^2}\theta {\cos ^2}\theta  = 1 - \frac{1}{2}{\sin ^2}2\theta  \cr} $$
For $$\alpha $$ to be minimum $${\sin ^2}2\theta $$  is maximum i.e., 1.
$$\eqalign{
  & \therefore \,{\alpha ^ * } = 1 - \frac{1}{2} = \frac{1}{2}  \cr 
  & {\text{Also}},\beta  =  - \left[ {2 + \frac{1}{4}{{\sin }^2}2\theta  + \frac{1}{{16}}{{\sin }^4}2\theta } \right] \cr} $$
For $$\beta $$ to be minimum, $${\sin ^2}2\theta $$  is maximum i.e.,
$$\eqalign{
  & \therefore \,\,{\beta ^ * } =  - \left[ {2 + \frac{1}{4} + \frac{1}{{16}}} \right] =  - \frac{{32 + 4 + 1}}{{16}} = \frac{{ - 37}}{{16}}  \cr 
  & \therefore \,\,{\alpha ^ * } + {\beta ^ * } = \frac{1}{2} - \frac{{37}}{{16}} = \frac{{ - 29}}{{16}} \cr} $$