Question

Let $$\lambda $$ and $$\alpha $$ be real. The set of all values of $$x$$ for which the system of linear equations
$$\eqalign{ & \lambda x + \left( {\sin \alpha } \right)y + \left( {\cos \alpha } \right)z = 0 \cr & x + \left( {\cos \alpha } \right)y + \left( {\sin \alpha } \right)z = 0 \cr & - x + \left( {\sin \alpha } \right) - \left( {\cos \alpha } \right)z = 0 \cr} $$
has a non-trivial solution, is

A. $$\left[ {0,\sqrt 2 } \right]$$
B. $$\left[ { - \sqrt 2 , 0 } \right]$$
C. $$\left[ { - \sqrt 2 ,\sqrt 2 } \right]$$  
D. None of these
Answer :   $$\left[ { - \sqrt 2 ,\sqrt 2 } \right]$$
Solution :
Since the system has a non-trivial solution, therefore \[\left| {\begin{array}{*{20}{c}} \lambda &{\sin \alpha }&{\cos \alpha }\\ 1&{\cos \alpha }&{\sin \alpha }\\ { - 1}&{\sin \alpha }&{ - \cos \alpha } \end{array}} \right| = 0\]
$$\eqalign{ & \Rightarrow \lambda \left( { - {{\cos }^2}\alpha - {{\sin }^2}\alpha } \right) - \left( { - \sin \alpha \cos \alpha - \sin \alpha \cos \alpha } \right) - \left( {{{\sin }^2}\alpha - {{\cos }^2}\alpha } \right) = 0 \cr & \Rightarrow - \lambda + \sin 2\alpha + \cos 2\alpha = 0 \cr & \Rightarrow \lambda = \sin 2\alpha + \cos 2\alpha \cr & \Rightarrow \lambda = \sqrt 2 \cos \left( {2\alpha - \frac{\pi }{4}} \right). \cr & {\text{Since, }} - 1 \leqslant \cos \left( {2\alpha - \frac{\pi }{4}} \right) \leqslant 1\forall \in R \cr & \therefore - \sqrt 2 \leqslant \lambda \leqslant \sqrt 2 {\text{ }}\,\,{\text{i}}{\text{.e}}{\text{., }}\lambda \in \left[ { - \sqrt 2 ,\sqrt 2 } \right] \cr} $$

Releted MCQ Question on
Algebra >> Matrices and Determinants

Releted Question 1

Consider the set $$A$$ of all determinants of order 3 with entries 0 or 1 only. Let $$B$$  be the subset of $$A$$ consisting of all determinants with value 1. Let $$C$$  be the subset of $$A$$ consisting of all determinants with value $$- 1.$$ Then

A. $$C$$ is empty
B. $$B$$  has as many elements as $$C$$
C. $$A = B \cup C$$
D. $$B$$  has twice as many elements as elements as $$C$$
Releted Question 2

If $$\omega \left( { \ne 1} \right)$$  is a cube root of unity, then
\[\left| {\begin{array}{*{20}{c}} 1&{1 + i + {\omega ^2}}&{{\omega ^2}}\\ {1 - i}&{ - 1}&{{\omega ^2} - 1}\\ { - i}&{ - i + \omega - 1}&{ - 1} \end{array}} \right|=\]

A. 0
B. 1
C. $$i$$
D. $$\omega $$
Releted Question 3

Let $$a, b, c$$  be the real numbers. Then following system of equations in $$x, y$$  and $$z$$
$$\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} - \frac{{{z^2}}}{{{c^2}}} = 1,$$    $$\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} + \frac{{{z^2}}}{{{c^2}}} = 1,$$    $$ - \frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} + \frac{{{z^2}}}{{{c^2}}} = 1$$     has

A. no solution
B. unique solution
C. infinitely many solutions
D. finitely many solutions
Releted Question 4

If $$A$$ and $$B$$ are square matrices of equal degree, then which one is correct among the followings?

A. $$A + B = B + A$$
B. $$A + B = A - B$$
C. $$A - B = B - A$$
D. $$AB=BA$$

Practice More Releted MCQ Question on
Matrices and Determinants


Practice More MCQ Question on Maths Section