Question

Let $$\int_0^a {f\left( x \right)dx} = \lambda $$    and $$\int_0^a {f\left( {2a - x} \right)dx} = \mu .$$     Then $$\int_0^{2a} {f\left( x \right)dx} $$    is equal to :

A. $$\lambda + \mu $$
B. $$\lambda - \mu $$  
C. $$2\lambda - \mu $$
D. $$\lambda - 2\mu $$
Answer :   $$\lambda - \mu $$
Solution :
$$\eqalign{ & \int_0^a {f\left( x \right)} dx = \lambda \cr & f\left( a \right) - f\left( 0 \right) = \lambda \to 1 \cr & \int_0^a {f\left( {2a - x} \right)dx} = \mu \cr & f\left( a \right) - f\left( {2a} \right) = \mu \to 2 \cr & {\text{from 1 and 2}} \cr & \,\,\,\,f\left( a \right) - f\left( 0 \right) = \lambda \cr & \,\,\,\,f\left( a \right) - f\left( {2a} \right) = \mu \cr & + \,\,\,\,\,\,\,\,\,\,\,\,\, - \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, - \cr & \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \cr & f\left( {2a} \right) - f\left( 0 \right) = \lambda - \mu \cr & \int_0^{2a} {f\left( x \right)} dx = \lambda - \mu \cr} $$

Releted MCQ Question on
Calculus >> Application of Integration

Releted Question 1

The area bounded by the curves $$y = f\left( x \right),$$   the $$x$$-axis and the ordinates $$x = 1$$  and $$x = b$$  is $$\left( {b - 1} \right)\sin \left( {3b + 4} \right).$$     Then $$f\left( x \right)$$  is-

A. $$\left( {x - 1} \right)\cos \left( {3x + 4} \right)$$
B. $$\sin \,\left( {3x + 4} \right)$$
C. $$\sin \,\left( {3x + 4} \right) + 3\left( {x - 1} \right)\cos \left( {3x + 4} \right)$$
D. none of these
Releted Question 2

The area bounded by the curves $$y = \left| x \right| - 1$$   and $$y = - \left| x \right| + 1$$   is-

A. $$1$$
B. $$2$$
C. $$2\sqrt 2 $$
D. $$4$$
Releted Question 3

The area bounded by the curves $$y = \sqrt x ,\,2y + 3 = x$$    and $$x$$-axis in the 1st quadrant is-

A. $$9$$
B. $$\frac{{27}}{4}$$
C. $$36$$
D. $$18$$
Releted Question 4

The area enclosed between the curves $$y = a{x^2}$$   and $$x = a{y^2}\left( {a > 0} \right)$$    is 1 sq. unit, then the value of $$a$$ is-

A. $$\frac{1}{{\sqrt 3 }}$$
B. $$\frac{1}{2}$$
C. $$1$$
D. $$\frac{1}{3}$$

Practice More Releted MCQ Question on
Application of Integration


Practice More MCQ Question on Maths Section