Question

Let $$g\left( x \right) = \frac{{{{\left( {x - 1} \right)}^n}}}{{\log \,{{\cos }^m}\left( {x - 1} \right)}};\,0 < x < 2,$$       $$m$$ and $$n$$ are integers, $$m \ne 0,\,n > 0,$$   and let $$p$$ be the left hand derivative of $$\left| {x - 1} \right|$$   at $$x=1.$$   If $$\mathop {\lim }\limits_{x \to {1^ + }} g\left( x \right) = p,$$     then-

A. $$n=1,\,\,m=1$$
B. $$n=1,\,\,m=-1$$
C. $$n=2,\,\,m=2$$  
D. $$n>2,\,\,m=n$$
Answer :   $$n=2,\,\,m=2$$
Solution :
As per question,
$$p=$$  left hand derivation of $$\left| {x - 1} \right|$$   at $$x = 1\,\, \Rightarrow p = - 1$$
Also $$\mathop {\lim }\limits_{x \to 1^+ } g\left( x \right) = p$$
Where $$g\left( x \right) = \frac{{{{\left( {x - 1} \right)}^n}}}{{\log \,{{\cos }^m}\left( {x - 1} \right)}},\,0 < x < 2,\,m,\,n$$         are integers, $$m \ne 0,\,n > 0$$
$$\therefore $$ We get,
$$\eqalign{ & \mathop {\lim }\limits_{x \to {1^ + }} \frac{{{{\left( {x - 1} \right)}^n}}}{{\log \,{{\cos }^m}\left( {x - 1} \right)}} = - 1 \cr & \Rightarrow \mathop {\lim }\limits_{h \to 0} \frac{{{h^n}}}{{\log \,{{\cos }^m}h}} = - 1 \cr & \Rightarrow \mathop {\lim }\limits_{h \to 0} \frac{{{h^n}}}{{m\left( {\log \,\cos h} \right)}} = - 1\,\,\left[ {{\text{Using L'Hospital's rule}}} \right] \cr & \Rightarrow \mathop {\lim }\limits_{h \to 0} \frac{{n\,{h^{n - 1}}\cos \,h}}{{m\left( { - \sin \,h} \right)}} = - 1\,\,\left[ {{\text{Using L'Hospital's rule}}} \right] \cr & \Rightarrow \mathop {\lim }\limits_{h \to 0} \frac{{n\,{h^{n - 2}}\cos \,h}}{{m\left( {\frac{{\sin \,h}}{h}} \right)}} = 1 \cr & \Rightarrow n = 2\,\,{\text{and}}\,\,\,m = 2 \cr} $$

Releted MCQ Question on
Calculus >> Differentiability and Differentiation

Releted Question 1

There exist a function $$f\left( x \right),$$  satisfying $$f\left( 0 \right) = 1,\,f'\left( 0 \right) = - 1,\,f\left( x \right) > 0$$       for all $$x,$$ and-

A. $$f''\left( x \right) > 0$$   for all $$x$$
B. $$ - 1 < f''\left( x \right) < 0$$    for all $$x$$
C. $$ - 2 \leqslant f''\left( x \right) \leqslant - 1$$    for all $$x$$
D. $$f''\left( x \right) < - 2$$   for all $$x$$
Releted Question 2

If $$f\left( a \right) = 2,\,f'\left( a \right) = 1,\,g\left( a \right) = - 1,\,g'\left( a \right) = 2,$$         then the value of $$\mathop {\lim }\limits_{x \to a} \frac{{g\left( x \right)f\left( a \right) - g\left( a \right)f\left( x \right)}}{{x - a}}$$      is-

A. $$-5$$
B. $$\frac{1}{5}$$
C. $$5$$
D. none of these
Releted Question 3

Let $$f:R \to R$$   be a differentiable function and $$f\left( 1 \right) = 4.$$   Then the value of $$\mathop {\lim }\limits_{x \to 1} \int\limits_4^{f\left( x \right)} {\frac{{2t}}{{x - 1}}} dt$$     is-

A. $$8f'\left( 1 \right)$$
B. $$4f'\left( 1 \right)$$
C. $$2f'\left( 1 \right)$$
D. $$f'\left( 1 \right)$$
Releted Question 4

Let [.] denote the greatest integer function and $$f\left( x \right) = \left[ {{{\tan }^2}x} \right],$$    then:

A. $$\mathop {\lim }\limits_{x \to 0} f\left( x \right)$$     does not exist
B. $$f\left( x \right)$$  is continuous at $$x = 0$$
C. $$f\left( x \right)$$  is not differentiable at $$x =0$$
D. $$f'\left( 0 \right) = 1$$

Practice More Releted MCQ Question on
Differentiability and Differentiation


Practice More MCQ Question on Maths Section