Question

Let $$g\left( x \right) = \int\limits_0^x {f\left( t \right)dt,} $$    where $$f$$ is such that $$\frac{1}{2} \leqslant f\left( t \right) \leqslant 1,$$    for $$t \in \left[ {0,\,1} \right]$$   and $$0 \leqslant f\left( t \right) \leqslant \frac{1}{2},$$    for $$t \in \left[ {1,\,2} \right]$$
Then $$g\left( 2 \right)$$  satisfies the inequality -

A. $$ - \frac{3}{2} \leqslant g\left( 2 \right) < \frac{1}{2}$$
B. $$0 \leqslant g\left( 2 \right) < 2$$  
C. $$\frac{3}{2} < g\left( 2 \right) \leqslant \frac{5}{2}$$
D. $$2 < g\left( 2 \right) < 4$$
Answer :   $$0 \leqslant g\left( 2 \right) < 2$$
Solution :
$$\eqalign{ & g\left( x \right) = \int\limits_0^x {f\left( t \right)dt} \cr & \Rightarrow g\left( 2 \right) = \int\limits_0^2 {f\left( t \right)dt} = \int\limits_0^1 {f\left( t \right)dt} + \int\limits_1^2 {f\left( t \right)dt} \cr & {\text{Now,}}\,\frac{1}{2} \leqslant f\left( t \right) \leqslant 1\,{\text{for }}t \in \left[ {0,\,1} \right] \cr & {\text{We get }}\int\limits_0^1 {\frac{1}{2}dt} \leqslant \int\limits_0^1 {f\left( t \right)dt} \leqslant \int\limits_0^1 {1dt} \cr} $$
(applying line integral on inequality)
$$\eqalign{ & \Rightarrow \frac{1}{2} \leqslant \int\limits_0^1 {f\left( t \right)dt} \leqslant 1.....(1) \cr & {\text{Again, 0}} \leqslant f\left( t \right) \leqslant \frac{1}{2}\,{\text{for }}t \in \left[ {1,\,2} \right] \cr & {\text{We get }}\int\limits_1^2 {0dt} \leqslant \int\limits_1^2 {f\left( t \right)dt} \leqslant \int\limits_1^2 {\frac{1}{2}dt} \cr} $$
(applying line integral on inequality)
$$ \Rightarrow 0 \leqslant \int\limits_1^2 {f\left( t \right)dt} \leqslant \frac{1}{2}.....(2)$$
From (1) and (2), we get
$$\frac{1}{2} \leqslant \int\limits_0^1 {f\left( t \right)dt} + \int\limits_1^2 {f\left( t \right)dt} \leqslant \frac{3}{2}\,\,{\text{or}}\,\,\frac{1}{2} \leqslant g\left( 2 \right) \leqslant \frac{3}{2}$$
$$ \Rightarrow 0 \leqslant g\left( 2 \right) \leqslant 2$$     is the most appropriate solution.

Releted MCQ Question on
Calculus >> Definite Integration

Releted Question 1

The value of the definite integral $$\int\limits_0^1 {\left( {1 + {e^{ - {x^2}}}} \right)} \,dx$$     is-

A. $$ - 1$$
B. $$2$$
C. $$1 + {e^{ - 1}}$$
D. none of these
Releted Question 2

Let $$a,\,b,\,c$$   be non-zero real numbers such that $$\int\limits_0^1 {\left( {1 + {{\cos }^8}x} \right)\left( {a{x^2} + bx + c} \right)dx = } \int\limits_0^2 {\left( {1 + {{\cos }^8}x} \right)\left( {a{x^2} + bx + c} \right)dx.} $$
Then the quadratic equation $$a{x^2} + bx + c = 0$$     has-

A. no root in $$\left( {0,\,2} \right)$$
B. at least one root in $$\left( {0,\,2} \right)$$
C. a double root in $$\left( {0,\,2} \right)$$
D. two imaginary roots
Releted Question 3

The value of the integral $$\int\limits_0^{\frac{\pi }{2}} {\frac{{\sqrt {\cot \,x} }}{{\sqrt {\cot \,x} + \sqrt {\tan \,x} }}dx} $$     is-

A. $$\frac{\pi }{4}$$
B. $$\frac{\pi }{2}$$
C. $$\pi $$
D. none of these
Releted Question 4

For any integer $$n$$ the integral $$\int\limits_0^\pi {{e^{{{\cos }^2}x}}} {\cos ^3}\left( {2n + 1} \right)xdx$$     has the value-

A. $$\pi $$
B. $$1$$
C. $$0$$
D. none of these

Practice More Releted MCQ Question on
Definite Integration


Practice More MCQ Question on Maths Section