Question

Let function $$f:R \to R$$   be defined by $$f\left( x \right) = 2x + \sin x$$    for $$x \in R,$$  then $$f$$ is

A. one-to-one and onto  
B. one-to-one but NOT onto
C. onto but NOT one-to-one
D. neither one-to-one nor onto
Answer :   one-to-one and onto
Solution :
$$\eqalign{ & {\text{Given}}\,{\text{that}}\,f\left( x \right) = 2x + \sin x,\,\,x \in R \Rightarrow f'\left( x \right) = 2 + \cos x \cr & {\text{But}}\, - 1 \leqslant \cos x \leqslant 1 \Rightarrow \,1 \leqslant 2 + \cos x \leqslant 3 \Rightarrow 1 \leqslant 2 + \cos x \leqslant 3 \cr & \therefore f'\left( x \right) > 0,\forall x \in R \cr} $$
$$ \Rightarrow f\left( x \right)$$  is strictly increasing and hence one-one
Also as $$x \to \infty ,f\left( x \right) \to \infty \,{\text{and}}\,x \to - \infty ,f\left( x \right) \to - \infty $$
$$\therefore $$ Range of $$f\left( x \right) = R = $$   domain of $$f\left( x \right) \Rightarrow f\left( x \right)$$   is onto.
Thus, $$f\left( x \right)$$  is one-one and onto.

Releted MCQ Question on
Calculus >> Function

Releted Question 1

Let $$R$$ be the set of real numbers. If $$f:R \to R$$   is a function defined by $$f\left( x \right) = {x^2},$$   then $$f$$ is:

A. Injective but not surjective
B. Surjective but not injective
C. Bijective
D. None of these.
Releted Question 2

The entire graphs of the equation $$y = {x^2} + kx - x + 9$$     is strictly above the $$x$$-axis if and only if

A. $$k < 7$$
B. $$ - 5 < k < 7$$
C. $$k > - 5$$
D. None of these.
Releted Question 3

Let $$f\left( x \right) = \left| {x - 1} \right|.$$    Then

A. $$f\left( {{x^2}} \right) = {\left( {f\left( x \right)} \right)^2}$$
B. $$f\left( {x + y} \right) = f\left( x \right) + f\left( y \right)$$
C. $$f\left( {\left| x \right|} \right) = \left| {f\left( x \right)} \right|$$
D. None of these
Releted Question 4

If $$x$$ satisfies $$\left| {x - 1} \right| + \left| {x - 2} \right| + \left| {x - 3} \right| \geqslant 6,$$       then

A. $$0 \leqslant x \leqslant 4$$
B. $$x \leqslant - 2\,{\text{or}}\,x \geqslant 4$$
C. $$x \leqslant 0\,{\text{or}}\,x \geqslant 4$$
D. None of these

Practice More Releted MCQ Question on
Function


Practice More MCQ Question on Maths Section