Question

Let $$f,g$$  and $$h$$ be real-valued functions defined on the interval $$\left[ {0,1} \right]$$   by $$f\left( x \right) = {e^{{x^2}}} + {e^{ - x^2}},g\left( x \right) = x{e^{{x^2}}} + {e^{ - {x^2}}}$$        and $$h\left( x \right) = {x^2}{e^{{x^2}}} + {e^{ - {x^2}}}.$$     If $$a,b$$  and $$c$$ denote, respectively, the absolute maximum of $$f,g$$  and $$h$$ on $$\left[ {0,1} \right],$$   then

A. $$a = b\,{\text{and}}\,c \ne b$$
B. $$a = c\,{\text{and}}\,a \ne b$$
C. $$a \ne b\,{\text{and}}\,c \ne b$$
D. $$a = b\,{\text{ = }}\,c$$  
Answer :   $$a = b\,{\text{ = }}\,c$$
Solution :
$$f\left( x \right) = {e^{{x^2}}} + {e^{ - {x^2}}} \Rightarrow f'\left( x \right) = 2x\left( {{e^{{x^2}}} - {e^{ - {x^2}}}} \right) \geqslant 0,\forall {\text{x}} \in \left[ {0,1} \right]$$
$$\therefore f\left( x \right)$$  is an increasing function on $$\left[ {0,1} \right]$$
$$\eqalign{ & {\text{Hence}}\,{f_{\max }} = f\left( 1 \right) = e + \frac{l}{e} = a \cr & g\left( x \right) = x{e^{{x^2}}} + {e^{ - {x^2}}} \cr & \Rightarrow g'\left( x \right) = \left( {2{x^2} + 1} \right){e^{{x^2}}} - 2x{e^{ - {x^2}}} \geqslant 0,\forall x \in \left[ {0,1} \right] \cr} $$
$$\therefore g\left( x \right)$$  is an increasing function on $$\left[ {0,1} \right]$$
$$\eqalign{ & \therefore {g_{\max }} = g\left( 1 \right) = e + \frac{1}{e} = b \cr & h\left( x \right) = {x^2}{e^{{x^2}}} + {e^{ - {x^2}}} \cr & h'\left( x \right) = 2x\left[ {{e^{{x^2}}}\left( {1 + {x^2}} \right) - {e^{ - {x^2}}}} \right] \geqslant 0,\forall x \in \left[ {0,1} \right] \cr} $$
$$\therefore h\left( x \right)$$  is an increasing function on $$\left[ {0,1} \right]$$
$$\therefore {h_{\max }} = h\left( 1 \right) = e + \frac{1}{e} = c$$
Hence $$a = b = c$$

Releted MCQ Question on
Calculus >> Function

Releted Question 1

Let $$R$$ be the set of real numbers. If $$f:R \to R$$   is a function defined by $$f\left( x \right) = {x^2},$$   then $$f$$ is:

A. Injective but not surjective
B. Surjective but not injective
C. Bijective
D. None of these.
Releted Question 2

The entire graphs of the equation $$y = {x^2} + kx - x + 9$$     is strictly above the $$x$$-axis if and only if

A. $$k < 7$$
B. $$ - 5 < k < 7$$
C. $$k > - 5$$
D. None of these.
Releted Question 3

Let $$f\left( x \right) = \left| {x - 1} \right|.$$    Then

A. $$f\left( {{x^2}} \right) = {\left( {f\left( x \right)} \right)^2}$$
B. $$f\left( {x + y} \right) = f\left( x \right) + f\left( y \right)$$
C. $$f\left( {\left| x \right|} \right) = \left| {f\left( x \right)} \right|$$
D. None of these
Releted Question 4

If $$x$$ satisfies $$\left| {x - 1} \right| + \left| {x - 2} \right| + \left| {x - 3} \right| \geqslant 6,$$       then

A. $$0 \leqslant x \leqslant 4$$
B. $$x \leqslant - 2\,{\text{or}}\,x \geqslant 4$$
C. $$x \leqslant 0\,{\text{or}}\,x \geqslant 4$$
D. None of these

Practice More Releted MCQ Question on
Function


Practice More MCQ Question on Maths Section