Question
Let $$f\left( {x,\,y} \right) = 0$$ be the equation of a circle. If $$f\left( {0,\,\lambda } \right) = 0$$ has equal roots $$\lambda = 2,\,2,$$ and $$f\left( {\lambda ,\,0} \right) = 0$$ has roots $$\lambda = \frac{4}{5},\,5$$ then the centre of the circle is :
A.
$$\left( {2,\,\frac{{29}}{{10}}} \right)$$
B.
$$\left( {\frac{{29}}{{10}},\,2} \right)$$
C.
$$\left( { - 2,\,\frac{{29}}{{10}}} \right)$$
D.
none of these
Answer :
$$\left( {\frac{{29}}{{10}},\,2} \right)$$
Solution :
$$\eqalign{
& f\left( {x,\,y} \right) \equiv {x^2} + {y^2} + 2gx + 2fy + c = 0 \cr
& {\text{Now,}}\,{\text{ }}f\left( {0,\,\lambda } \right) \equiv {\lambda ^2} + 2f\lambda + c = 0,\,{\text{and its roots are }}2,\,2 \cr
& \therefore \,\,2 + 2 = - 2f,\,2 \times 2 = c,\,\,{\text{i}}{\text{.e}}{\text{.,}}f = - 2,\,c = 4 \cr
& f\left( {\lambda ,\,0} \right) \equiv {\lambda ^2} + 2g\lambda + c = 0,\,{\text{and its roots are }}\frac{4}{5},\,5 \cr
& \therefore \,\,\frac{4}{5} + 5 = - 2g,\,\frac{4}{5} \times 5 = c \cr
& {\text{Thus }}g = - \frac{{29}}{{10}},\,f = - 2 \cr} $$