Question

Let $$f\left( x \right) = x - \left[ x \right],$$    where $$\left[ x \right]$$ denotes the greatest integer $$ \leqslant x$$  and $$g\left( x \right) = \mathop {\lim }\limits_{n \to \infty } \frac{{{{\left\{ {f\left( x \right)} \right\}}^{2n}} - 1}}{{{{\left\{ {f\left( x \right)} \right\}}^{2n}} + 1}},$$      then $$g\left( x \right)$$  is equal to :

A. $$0$$
B. $$1$$
C. $$ - 1$$  
D. none of these
Answer :   $$ - 1$$
Solution :
$$\eqalign{ & {\text{As }}0 \leqslant x - \left[ x \right] < 1\,\forall \,x\, \in \,R,\,0 \leqslant f\left( x \right) < 1 \cr & \therefore \,\mathop {\lim }\limits_{n \to \infty } {\left\{ {f\left( x \right)} \right\}^{2n}} = 0 \cr & {\text{Thus, for}}\,x\, \in \,R, \cr & g\left( x \right) = \mathop {\lim }\limits_{n \to \infty } \frac{{{{\left\{ {f\left( x \right)} \right\}}^{2n}} - 1}}{{{{\left\{ {f\left( x \right)} \right\}}^{2n}} + 1}} = \frac{{0 - 1}}{{0 + 1}} = - 1{\text{ }} \cr} $$

Releted MCQ Question on
Calculus >> Limits

Releted Question 1

lf $$f\left( x \right) = \sqrt {\frac{{x - \sin \,x}}{{x + {{\cos }^2}x}}} ,$$     then $$\mathop {\lim }\limits_{x\, \to \,\infty } f\left( x \right)$$    is-

A. $$0$$
B. $$\infty $$
C. $$1$$
D. none of these
Releted Question 2

If $$G\left( x \right) = - \sqrt {25 - {x^2}} $$     then $$\mathop {\lim }\limits_{x\, \to \,{\text{I}}} \frac{{G\left( x \right) - G\left( I \right)}}{{x - 1}}$$     has the value-

A. $$\frac{1}{{24}}$$
B. $$\frac{1}{{5}}$$
C. $$ - \sqrt {24} $$
D. none of these
Releted Question 3

$$\mathop {\lim }\limits_{n\, \to \,\infty } \left\{ {\frac{1}{{1 - {n^2}}} + \frac{2}{{1 - {n^2}}} + ..... + \frac{n}{{1 - {n^2}}}} \right\}$$        is equal to-

A. $$0$$
B. $$ - \frac{1}{2}$$
C. $$ \frac{1}{2}$$
D. none of these
Releted Question 4

If $$\eqalign{ & f\left( x \right) = \frac{{\sin \left[ x \right]}}{{\left[ x \right]}},\,\,\left[ x \right] \ne 0 \cr & \,\,\,\,\,\,\,\,\,\,\,\,\, = 0,\,\,\,\,\,\,\,\,\,\,\,\,\,\left[ x \right] = 0 \cr} $$
Where \[\left[ x \right]\] denotes the greatest integer less than or equal to $$x.$$ then $$\mathop {\lim }\limits_{x\, \to \,0} f\left( x \right)$$   equals

A. $$1$$
B. $$0$$
C. $$ - 1$$
D. none of these

Practice More Releted MCQ Question on
Limits


Practice More MCQ Question on Maths Section