Question

Let $$f\left( x \right) = \left| {x - 2} \right| + \left| {x - 3} \right| + \left| {x - 4} \right|$$       and $$g\left( x \right) = f\left( {x + 1} \right).$$    Then :

A. $$g\left( x \right)$$  is an even function
B. $$g\left( x \right)$$  is an odd function
C. $$g\left( x \right)$$  is neither even nor odd  
D. $$g\left( x \right)$$  is periodic
Answer :   $$g\left( x \right)$$  is neither even nor odd
Solution :
Function mcq solution image
$$\eqalign{ & g\left( x \right) = f\left( {x + 1} \right) = \left| {x - 1} \right| + \left| {x - 2} \right| + \left| {x - 3} \right| \cr & {\text{If }}x < 1,\,\,\,g\left( x \right) = - x + 1 - x + 2 - x + 3 = - 3x + 6 \cr & {\text{If 1}} \leqslant x < 2,\,\,\,g\left( x \right) = x - 1 - x + 2 - x + 3 = - x + 4 \cr & {\text{If 2}} \leqslant x < 3,\,\,\,g\left( x \right) = x - 1 + x - 2 - x + 3 = x \cr & {\text{If }}x \geqslant 3,\,\,\,g\left( x \right) = x - 1 + x - 2 + x - 3 = 3x - 6 \cr} $$

Releted MCQ Question on
Calculus >> Function

Releted Question 1

Let $$R$$ be the set of real numbers. If $$f:R \to R$$   is a function defined by $$f\left( x \right) = {x^2},$$   then $$f$$ is:

A. Injective but not surjective
B. Surjective but not injective
C. Bijective
D. None of these.
Releted Question 2

The entire graphs of the equation $$y = {x^2} + kx - x + 9$$     is strictly above the $$x$$-axis if and only if

A. $$k < 7$$
B. $$ - 5 < k < 7$$
C. $$k > - 5$$
D. None of these.
Releted Question 3

Let $$f\left( x \right) = \left| {x - 1} \right|.$$    Then

A. $$f\left( {{x^2}} \right) = {\left( {f\left( x \right)} \right)^2}$$
B. $$f\left( {x + y} \right) = f\left( x \right) + f\left( y \right)$$
C. $$f\left( {\left| x \right|} \right) = \left| {f\left( x \right)} \right|$$
D. None of these
Releted Question 4

If $$x$$ satisfies $$\left| {x - 1} \right| + \left| {x - 2} \right| + \left| {x - 3} \right| \geqslant 6,$$       then

A. $$0 \leqslant x \leqslant 4$$
B. $$x \leqslant - 2\,{\text{or}}\,x \geqslant 4$$
C. $$x \leqslant 0\,{\text{or}}\,x \geqslant 4$$
D. None of these

Practice More Releted MCQ Question on
Function


Practice More MCQ Question on Maths Section