Question

Let $$f\left( x \right) = {x^2} - 1,\,0 < x < 2$$      and $$2x + 3,\,2 \leqslant x < 3.$$    The quadratic equation whose roots are, $$\mathop {\lim }\limits_{x \to 2 - 0} f\left( x \right)$$   and $$\mathop {\lim }\limits_{x \to 2 + 0} f\left( x \right)$$   is :

A. $${x^2} - 6x + 9 = 0$$
B. $${x^2} - 10x + 21 = 0$$  
C. $${x^2} - 14x + 49 = 0$$
D. none of these
Answer :   $${x^2} - 10x + 21 = 0$$
Solution :
$$\eqalign{ & \mathop {\lim }\limits_{x \to 2 - 0} f\left( x \right) = \mathop {\lim }\limits_{x \to 2 - 0} \left( {{x^2} - 1} \right) = {2^2} - 1 = 3 \cr & \mathop {\lim }\limits_{x \to 2 + 0} f\left( x \right) = \mathop {\lim }\limits_{x \to 2 + 0} \left( {2x + 3} \right) = 2 \times 2 + 3 = 7 \cr} $$
$$\therefore $$  Required quadratic equation is $${x^2} - 10x + 21 = 0$$

Releted MCQ Question on
Calculus >> Limits

Releted Question 1

lf $$f\left( x \right) = \sqrt {\frac{{x - \sin \,x}}{{x + {{\cos }^2}x}}} ,$$     then $$\mathop {\lim }\limits_{x\, \to \,\infty } f\left( x \right)$$    is-

A. $$0$$
B. $$\infty $$
C. $$1$$
D. none of these
Releted Question 2

If $$G\left( x \right) = - \sqrt {25 - {x^2}} $$     then $$\mathop {\lim }\limits_{x\, \to \,{\text{I}}} \frac{{G\left( x \right) - G\left( I \right)}}{{x - 1}}$$     has the value-

A. $$\frac{1}{{24}}$$
B. $$\frac{1}{{5}}$$
C. $$ - \sqrt {24} $$
D. none of these
Releted Question 3

$$\mathop {\lim }\limits_{n\, \to \,\infty } \left\{ {\frac{1}{{1 - {n^2}}} + \frac{2}{{1 - {n^2}}} + ..... + \frac{n}{{1 - {n^2}}}} \right\}$$        is equal to-

A. $$0$$
B. $$ - \frac{1}{2}$$
C. $$ \frac{1}{2}$$
D. none of these
Releted Question 4

If $$\eqalign{ & f\left( x \right) = \frac{{\sin \left[ x \right]}}{{\left[ x \right]}},\,\,\left[ x \right] \ne 0 \cr & \,\,\,\,\,\,\,\,\,\,\,\,\, = 0,\,\,\,\,\,\,\,\,\,\,\,\,\,\left[ x \right] = 0 \cr} $$
Where \[\left[ x \right]\] denotes the greatest integer less than or equal to $$x.$$ then $$\mathop {\lim }\limits_{x\, \to \,0} f\left( x \right)$$   equals

A. $$1$$
B. $$0$$
C. $$ - 1$$
D. none of these

Practice More Releted MCQ Question on
Limits


Practice More MCQ Question on Maths Section