Question

Let \[f\left( x \right) = \left\{ \begin{array}{l} \left( {x - 1} \right)\sin \frac{1}{{x - 1}}\,{\rm{if}}\,\,x \ne 1\\ 0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{\rm{if}}\,\,x = 1 \end{array} \right.\]
Then which one of the following is true?

A. $$f$$ is neither differentiable at $$x =0$$  nor at $$x=1$$
B. $$f$$ is differentiable at $$x=0$$  and at $$x=1$$
C. $$f$$ is differentiable at $$x =0$$  but not at $$x=1$$  
D. $$f$$ is differentiable at $$x = 1$$  but not at $$x=0$$
Answer :   $$f$$ is differentiable at $$x =0$$  but not at $$x=1$$
Solution :
We have \[f\left( x \right) = \left\{ \begin{array}{l} \left( {x - 1} \right)\sin \frac{1}{{x - 1}}\,{\rm{if}}\,\,x \ne 1\\ 0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{\rm{if}}\,\,x = 1 \end{array} \right.\]
$$\eqalign{ & Rf\left( 1 \right) = \mathop {\lim }\limits_{h \to 0} \frac{{f\left( {1 + h} \right) - f\left( 1 \right)}}{h} \cr & = \mathop {\lim }\limits_{h \to 0} \frac{{h\,\sin \frac{1}{h} - 0}}{h} \cr & = \mathop {\lim }\limits_{h \to 0} \,\sin \frac{1}{h} = {\text{a finite number}} \cr} $$
Let this finite number be $$l$$
$$\eqalign{ & Lf'\left( 1 \right) = \mathop {\lim }\limits_{h \to 0} \frac{{f\left( {1 - h} \right) - f\left( 1 \right)}}{{ - h}} \cr & = \mathop {\lim }\limits_{h \to 0} \frac{{ - h\,\sin \left( {\frac{1}{{ - h}}} \right)}}{{ - h}} \cr & = \mathop {\lim }\limits_{h \to 0} \,\sin \left( {\frac{1}{{ - h}}} \right) \cr & = - \mathop {\lim }\limits_{h \to 0} \,\sin \left( {\frac{1}{h}} \right) = - \left( {{\text{a finite number}}} \right) = - l \cr} $$
Thus $$Rf'\left( 1 \right) \ne Lf'\left( 1 \right)$$
$$\therefore f$$ is not differentiable at $$x = 1$$
Also,
$$\eqalign{ & {\left. {f'\left( 0 \right) = \sin \frac{1}{{\left( {x - 1} \right)}} - \frac{{x - 1}}{{{{\left( {x - 1} \right)}^2}}}\cos \left( {\frac{1}{{x - 1}}} \right)} \right]_{x = 0}} \cr & = - \sin \,1 + \cos \,1 \cr} $$
$$\therefore f$$ is differentiable at $$x =0$$

Releted MCQ Question on
Calculus >> Differentiability and Differentiation

Releted Question 1

There exist a function $$f\left( x \right),$$  satisfying $$f\left( 0 \right) = 1,\,f'\left( 0 \right) = - 1,\,f\left( x \right) > 0$$       for all $$x,$$ and-

A. $$f''\left( x \right) > 0$$   for all $$x$$
B. $$ - 1 < f''\left( x \right) < 0$$    for all $$x$$
C. $$ - 2 \leqslant f''\left( x \right) \leqslant - 1$$    for all $$x$$
D. $$f''\left( x \right) < - 2$$   for all $$x$$
Releted Question 2

If $$f\left( a \right) = 2,\,f'\left( a \right) = 1,\,g\left( a \right) = - 1,\,g'\left( a \right) = 2,$$         then the value of $$\mathop {\lim }\limits_{x \to a} \frac{{g\left( x \right)f\left( a \right) - g\left( a \right)f\left( x \right)}}{{x - a}}$$      is-

A. $$-5$$
B. $$\frac{1}{5}$$
C. $$5$$
D. none of these
Releted Question 3

Let $$f:R \to R$$   be a differentiable function and $$f\left( 1 \right) = 4.$$   Then the value of $$\mathop {\lim }\limits_{x \to 1} \int\limits_4^{f\left( x \right)} {\frac{{2t}}{{x - 1}}} dt$$     is-

A. $$8f'\left( 1 \right)$$
B. $$4f'\left( 1 \right)$$
C. $$2f'\left( 1 \right)$$
D. $$f'\left( 1 \right)$$
Releted Question 4

Let [.] denote the greatest integer function and $$f\left( x \right) = \left[ {{{\tan }^2}x} \right],$$    then:

A. $$\mathop {\lim }\limits_{x \to 0} f\left( x \right)$$     does not exist
B. $$f\left( x \right)$$  is continuous at $$x = 0$$
C. $$f\left( x \right)$$  is not differentiable at $$x =0$$
D. $$f'\left( 0 \right) = 1$$

Practice More Releted MCQ Question on
Differentiability and Differentiation


Practice More MCQ Question on Maths Section