Question

Let \[f\left( x \right) = \left\{ \begin{array}{l} {x^2}\left| {\cos \frac{\pi }{x}} \right|,\,\,\,\,x \ne 0\\ 0,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x = 0 \end{array} \right.,\,x \in R\]        then $$f$$ is-

A. differentiable both at $$x = 0$$   and at $$x =2$$
B. differentiable at $$x = 0$$   but not differentiable at $$x =2$$  
C. not differentiable at $$x = 0$$   but differentiable at $$x =2$$
D. differentiable neither at $$x = 0$$   nor at $$x =2$$
Answer :   differentiable at $$x = 0$$   but not differentiable at $$x =2$$
Solution :
$$\eqalign{ & {\text{We have }}f'\left( {{0^ + }} \right) = \mathop {\lim }\limits_{h \to 0} \frac{{f\left( {0 + h} \right) - f\left( 0 \right)}}{h} \cr & = \mathop {\lim }\limits_{h \to 0} \frac{{{h^2}\left| {\cos \frac{\pi }{h}} \right|}}{h} \cr & = \mathop {\lim }\limits_{h \to 0} h\left| {\cos \frac{\pi }{h}} \right| \cr & = 0 \times {\text{ some finite value}} = 0 \cr & {\text{Also }}f'\left( {{0^ - }} \right) = \mathop {\lim }\limits_{h \to 0} \frac{{f\left( {0 - h} \right) - f\left( 0 \right)}}{{ - h}} \cr & = \mathop {\lim }\limits_{h \to 0} \frac{{{h^2}\left| {\cos \frac{\pi }{{ - h}}} \right|}}{{ - h}} \cr & = \mathop {\lim }\limits_{h \to 0} - h\left| {\cos \frac{\pi }{h}} \right| \cr & = 0 \times {\text{ some finite value}} = 0 \cr & \because f'\left( {{0^ + }} \right) = f'\left( {{0^ - }} \right) \cr & \Rightarrow f\,{\text{is differentiable at }}x = 0 \cr & {\text{Now }}f'\left( {{2^ + }} \right) = \mathop {\lim }\limits_{h \to 0} \frac{{f\left( {2 + h} \right) - f\left( 2 \right)}}{h} \cr & = \mathop {\lim }\limits_{h \to 0} \frac{{{{\left( {2 + h} \right)}^2}\left| {\cos \frac{\pi }{{2 + h}}} \right| - 4\left| {\cos \frac{\pi }{2}} \right|}}{h} \cr & = \mathop {\lim }\limits_{h \to 0} \frac{{{{\left( {2 + h} \right)}^2}\left( {\cos \frac{\pi }{{2 + h}}} \right)}}{h} \cr & = \mathop {\lim }\limits_{h \to 0} \frac{{{{\left( {2 + h} \right)}^2}}}{h}\sin \left( {\frac{\pi }{2} - \frac{\pi }{{2 + h}}} \right) \cr & = \mathop {\lim }\limits_{h \to 0} \frac{{{{\left( {2 + h} \right)}^2}}}{h}\sin \left( {\frac{{\pi h}}{{2\left( {2 + h} \right)}}} \right) \cr & = \mathop {\lim }\limits_{h \to 0} \frac{{{{\left( {2 + h} \right)}^2}}}{h} \times \frac{{\sin \left( {\frac{{\pi h}}{{2\left( {2 + h} \right)}}} \right)}}{{\left( {\frac{{\pi h}}{{2\left( {2 + h} \right)}}} \right)}} \times \frac{{\pi h}}{{2\left( {2 + h} \right)}} = \pi \cr & {\text{Also }}f'\left( {{2^ - }} \right) = \mathop {\lim }\limits_{h \to 0} \frac{{f\left( {2 - h} \right) - f\left( 2 \right)}}{{ - h}} \cr & = \mathop {\lim }\limits_{h \to 0} \frac{{{{\left( {2 - h} \right)}^2}\left| {\cos \frac{\pi }{{2 - h}}} \right| - 0}}{{ - h}} \cr & = \mathop {\lim }\limits_{h \to 0} \frac{{ - {{\left( {2 - h} \right)}^2}\cos \left( {\frac{\pi }{{2 - h}}} \right)}}{{ - h}} \cr & = \mathop {\lim }\limits_{h \to 0} \frac{{{{\left( {2 - h} \right)}^2}\sin \left( {\frac{\pi }{2} - \frac{\pi }{{2 - h}}} \right)}}{h} \cr & = \mathop {\lim }\limits_{h \to 0} \frac{{{{\left( {2 - h} \right)}^2}}}{h} \times \frac{{\sin \left( {\frac{{ - \pi h}}{{2\left( {2 - h} \right)}}} \right)}}{{\left( {\frac{{ - \pi h}}{{2\left( {2 - h} \right)}}} \right)}} \times \frac{{ - \pi h}}{{2\left( {2 - h} \right)}} = - \pi \cr} $$
As $$f'\left( {{2^ + }} \right) \ne f'\left( {{2^ - }} \right)\,\, \Rightarrow f$$     is not differentiable at $$x=2.$$

Releted MCQ Question on
Calculus >> Differentiability and Differentiation

Releted Question 1

There exist a function $$f\left( x \right),$$  satisfying $$f\left( 0 \right) = 1,\,f'\left( 0 \right) = - 1,\,f\left( x \right) > 0$$       for all $$x,$$ and-

A. $$f''\left( x \right) > 0$$   for all $$x$$
B. $$ - 1 < f''\left( x \right) < 0$$    for all $$x$$
C. $$ - 2 \leqslant f''\left( x \right) \leqslant - 1$$    for all $$x$$
D. $$f''\left( x \right) < - 2$$   for all $$x$$
Releted Question 2

If $$f\left( a \right) = 2,\,f'\left( a \right) = 1,\,g\left( a \right) = - 1,\,g'\left( a \right) = 2,$$         then the value of $$\mathop {\lim }\limits_{x \to a} \frac{{g\left( x \right)f\left( a \right) - g\left( a \right)f\left( x \right)}}{{x - a}}$$      is-

A. $$-5$$
B. $$\frac{1}{5}$$
C. $$5$$
D. none of these
Releted Question 3

Let $$f:R \to R$$   be a differentiable function and $$f\left( 1 \right) = 4.$$   Then the value of $$\mathop {\lim }\limits_{x \to 1} \int\limits_4^{f\left( x \right)} {\frac{{2t}}{{x - 1}}} dt$$     is-

A. $$8f'\left( 1 \right)$$
B. $$4f'\left( 1 \right)$$
C. $$2f'\left( 1 \right)$$
D. $$f'\left( 1 \right)$$
Releted Question 4

Let [.] denote the greatest integer function and $$f\left( x \right) = \left[ {{{\tan }^2}x} \right],$$    then:

A. $$\mathop {\lim }\limits_{x \to 0} f\left( x \right)$$     does not exist
B. $$f\left( x \right)$$  is continuous at $$x = 0$$
C. $$f\left( x \right)$$  is not differentiable at $$x =0$$
D. $$f'\left( 0 \right) = 1$$

Practice More Releted MCQ Question on
Differentiability and Differentiation


Practice More MCQ Question on Maths Section