Question

Let $$f\left( x \right) = \cos \,3x + \sin \,\sqrt 3 x.$$     Then $$f\left( x \right)$$  is :

A. a periodic function of period $$2\pi $$
B. a periodic function of period $$\sqrt 3 \pi $$
C. not a periodic function  
D. none of these
Answer :   not a periodic function
Solution :
$$\cos \,3x$$  has the period $$\frac{{2\pi }}{3}$$ and $$\sin \,\sqrt 3 x$$  has the period $$\frac{{2\pi }}{{\sqrt 3 }}.$$
As $$\frac{{2\pi }}{3}$$ and $$\frac{{2\pi }}{{\sqrt 3 }}$$ do not have a common multiple, $$f\left( x \right)$$  is not periodic.

Releted MCQ Question on
Calculus >> Function

Releted Question 1

Let $$R$$ be the set of real numbers. If $$f:R \to R$$   is a function defined by $$f\left( x \right) = {x^2},$$   then $$f$$ is:

A. Injective but not surjective
B. Surjective but not injective
C. Bijective
D. None of these.
Releted Question 2

The entire graphs of the equation $$y = {x^2} + kx - x + 9$$     is strictly above the $$x$$-axis if and only if

A. $$k < 7$$
B. $$ - 5 < k < 7$$
C. $$k > - 5$$
D. None of these.
Releted Question 3

Let $$f\left( x \right) = \left| {x - 1} \right|.$$    Then

A. $$f\left( {{x^2}} \right) = {\left( {f\left( x \right)} \right)^2}$$
B. $$f\left( {x + y} \right) = f\left( x \right) + f\left( y \right)$$
C. $$f\left( {\left| x \right|} \right) = \left| {f\left( x \right)} \right|$$
D. None of these
Releted Question 4

If $$x$$ satisfies $$\left| {x - 1} \right| + \left| {x - 2} \right| + \left| {x - 3} \right| \geqslant 6,$$       then

A. $$0 \leqslant x \leqslant 4$$
B. $$x \leqslant - 2\,{\text{or}}\,x \geqslant 4$$
C. $$x \leqslant 0\,{\text{or}}\,x \geqslant 4$$
D. None of these

Practice More Releted MCQ Question on
Function


Practice More MCQ Question on Maths Section