Question

Let $$f\left( x \right)$$  be a function satisfying $$f'\left( x \right) = f\left( x \right)$$    with $$f\left( 0 \right) = 1$$   and $$g\left( x \right)$$  be a function that satisfies $$f\left( x \right) + g\left( x \right) = {x^2}.$$     Then the value of the integral $$\int\limits_0^1 {f\left( x \right)\,g\left( x \right)dx,} $$    is-

A. $$e + \frac{{{e^2}}}{2} + \frac{5}{2}$$
B. $$e - \frac{{{e^2}}}{2} - \frac{5}{2}$$
C. $$e + \frac{{{e^2}}}{2} - \frac{3}{2}$$
D. $$e - \frac{{{e^2}}}{2} - \frac{3}{2}$$  
Answer :   $$e - \frac{{{e^2}}}{2} - \frac{3}{2}$$
Solution :
Given $$f'\left( x \right) = f\left( x \right) \Rightarrow \frac{{f'\left( x \right)}}{{f\left( x \right)}} = 1$$
Integrating $$\log f\left( x \right) = x + c \Rightarrow f\left( x \right) = {e^{x + c}}$$
$$\eqalign{ & f\left( 0 \right) = 1 \Rightarrow f\left( x \right) = {e^x} \cr & \therefore \int\limits_0^1 {f\left( x \right)\,g\left( x \right)} dx = \int\limits_0^1 {{e^x}\left( {{x^2} - {e^x}} \right)} dx \cr & = \int\limits_0^1 {{x^2}{e^x}dx} - \int\limits_0^1 {{e^{2x}}dx} \cr & = \left[ {{x^2}{e^x}} \right]_0^1 - 2\left[ {x{e^x} - {e^x}} \right]_0^1 - \frac{1}{2}\left[ {{e^{2x}}} \right]_0^1 \cr & = e - \left[ {\frac{{{e^2}}}{2} - \frac{1}{2}} \right] - 2\left[ {e - e + 1} \right] \cr & = e - \frac{{{e^2}}}{2} - \frac{3}{2} \cr} $$

Releted MCQ Question on
Calculus >> Definite Integration

Releted Question 1

The value of the definite integral $$\int\limits_0^1 {\left( {1 + {e^{ - {x^2}}}} \right)} \,dx$$     is-

A. $$ - 1$$
B. $$2$$
C. $$1 + {e^{ - 1}}$$
D. none of these
Releted Question 2

Let $$a,\,b,\,c$$   be non-zero real numbers such that $$\int\limits_0^1 {\left( {1 + {{\cos }^8}x} \right)\left( {a{x^2} + bx + c} \right)dx = } \int\limits_0^2 {\left( {1 + {{\cos }^8}x} \right)\left( {a{x^2} + bx + c} \right)dx.} $$
Then the quadratic equation $$a{x^2} + bx + c = 0$$     has-

A. no root in $$\left( {0,\,2} \right)$$
B. at least one root in $$\left( {0,\,2} \right)$$
C. a double root in $$\left( {0,\,2} \right)$$
D. two imaginary roots
Releted Question 3

The value of the integral $$\int\limits_0^{\frac{\pi }{2}} {\frac{{\sqrt {\cot \,x} }}{{\sqrt {\cot \,x} + \sqrt {\tan \,x} }}dx} $$     is-

A. $$\frac{\pi }{4}$$
B. $$\frac{\pi }{2}$$
C. $$\pi $$
D. none of these
Releted Question 4

For any integer $$n$$ the integral $$\int\limits_0^\pi {{e^{{{\cos }^2}x}}} {\cos ^3}\left( {2n + 1} \right)xdx$$     has the value-

A. $$\pi $$
B. $$1$$
C. $$0$$
D. none of these

Practice More Releted MCQ Question on
Definite Integration


Practice More MCQ Question on Maths Section