Question

Let $$f\left( x \right)$$ be defined for all $$x > 0$$  and be continues. Let $$f\left( x \right)$$ satisfy $$f\left( {\frac{x}{y}} \right) = f\left( x \right) - f\left( y \right)$$     for all $${x,y}$$  and $$f\left( e \right) = 1.$$   Then

A. $$f\left( x \right)$$ is bounded
B. $$f\left( {\frac{1}{x}} \right) \to 0\,{\text{as}}\,x \to 0$$
C. $$x\,f\left( x \right) \to 1\,{\text{as}}\,x \to 0$$
D. $$f\left( x \right) = \ln x$$  
Answer :   $$f\left( x \right) = \ln x$$
Solution :
$$f\left( x \right)$$  is continuous and defined for all $$x > 0$$  and $$f\left( {\frac{x}{y}} \right) = f\left( x \right) - f\left( y \right)$$
Also $$f\left( e \right) = 1$$
$$ \Rightarrow $$ Clearly $$f\left( x \right) = \ell n\,x$$    which satisfies all these properties
$$\therefore f\left( x \right) = \ell n\,x$$

Releted MCQ Question on
Calculus >> Function

Releted Question 1

Let $$R$$ be the set of real numbers. If $$f:R \to R$$   is a function defined by $$f\left( x \right) = {x^2},$$   then $$f$$ is:

A. Injective but not surjective
B. Surjective but not injective
C. Bijective
D. None of these.
Releted Question 2

The entire graphs of the equation $$y = {x^2} + kx - x + 9$$     is strictly above the $$x$$-axis if and only if

A. $$k < 7$$
B. $$ - 5 < k < 7$$
C. $$k > - 5$$
D. None of these.
Releted Question 3

Let $$f\left( x \right) = \left| {x - 1} \right|.$$    Then

A. $$f\left( {{x^2}} \right) = {\left( {f\left( x \right)} \right)^2}$$
B. $$f\left( {x + y} \right) = f\left( x \right) + f\left( y \right)$$
C. $$f\left( {\left| x \right|} \right) = \left| {f\left( x \right)} \right|$$
D. None of these
Releted Question 4

If $$x$$ satisfies $$\left| {x - 1} \right| + \left| {x - 2} \right| + \left| {x - 3} \right| \geqslant 6,$$       then

A. $$0 \leqslant x \leqslant 4$$
B. $$x \leqslant - 2\,{\text{or}}\,x \geqslant 4$$
C. $$x \leqslant 0\,{\text{or}}\,x \geqslant 4$$
D. None of these

Practice More Releted MCQ Question on
Function


Practice More MCQ Question on Maths Section