Question
Let $$f\left( x \right)$$ be a polynomial function of the second degree. If $$f\left( 1 \right) = f\left( { - 1} \right)$$ and $${a_1},\,{a_2},\,{a_3}$$ are in AP then $$f'\left( {{a_1}} \right),\,f'\left( {{a_2}} \right),\,f'\left( {{a_3}} \right)$$ are in :
A.
AP
B.
GP
C.
HP
D.
none of these
Answer :
AP
Solution :
$$\eqalign{
& {\text{Let }}f\left( x \right) = \lambda {x^2} + \mu x + v \cr
& {\text{Then }}f'\left( x \right) = 2\lambda x + \mu \cr
& {\text{Also,}}\,\,f\left( 1 \right) = f\left( { - 1} \right) \cr
& \Rightarrow \lambda + \mu + v = \lambda - \mu + v \cr
& \Rightarrow \mu = 0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\therefore f'\left( x \right) = 2\lambda x \cr
& \therefore f'\left( {{a_1}} \right) = 2\lambda {a_1}\,\,\,\,f'\left( {{a_2}} \right) = 2\lambda {a_2}\,\,\,\,f'\left( {{a_3}} \right) = 2\lambda {a_3} \cr
& {\text{As }}{a_1},\,{a_2},\,{a_3}{\text{ are in AP, }}f'\left( {{a_1}} \right),\,f'\left( {{a_2}} \right),\,f'\left( {{a_3}} \right){\text{ are in AP}}{\text{.}} \cr} $$