Question

Let $$f\left( x \right)$$  be a function defined by $$f\left( x \right) = \int_1^x {x\left( {{x^2} - 3x + 2} \right)dx,\,1 \leqslant x \leqslant 3.} $$           Then the range of $$f\left( x \right)$$  is :

A. $$\left[ {0,\,2} \right]$$
B. $$\left[ { - \frac{1}{4},\,4} \right]$$
C. $$\left[ { - \frac{1}{4},\,2} \right]$$  
D. none of these
Answer :   $$\left[ { - \frac{1}{4},\,2} \right]$$
Solution :
$$\eqalign{ & f'\left( x \right) = x\left( {{x^2} - 3x + 2} \right) = x\left( {x - 1} \right)\left( {x - 2} \right) \cr & {\text{The sign scheme for}}\,{\text{ }}f'\left( x \right){\text{ is as below}}{\text{.}} \cr} $$
Application of Integration mcq solution image
$$\eqalign{ & \therefore f'\left( x \right) \leqslant 0{\text{ in }}1 \leqslant x \leqslant 2{\text{ and }}f'\left( x \right) \geqslant 0{\text{ in }}2 \leqslant x \leqslant 3 \cr & \therefore f\left( x \right)\,{\text{is m}}{\text{.d}}{\text{. in }}\left[ {1,\,2} \right]{\text{ and m}}{\text{.i}}{\text{. in }}\left[ {2,\,3} \right] \cr & \therefore \min f\left( x \right) = f\left( 2 \right) = \int_1^2 {x\left( {{x^2} - 3x + 2} \right)dx} \cr & = \left[ {\frac{{{x^4}}}{4} - {x^3} + {x^2}} \right]_1^2 \cr & = - \frac{1}{4} \cr & \max f\left( x \right) = {\text{the greatest among}}\left\{ {f\left( 1 \right),\,f\left( 3 \right)} \right\} \cr & f\left( 1 \right) = \int_1^1 {x\left( {{x^2} - 3x + 2} \right)dx} = 0 \cr & f\left( 3 \right) = \int_1^3 {x\left( {{x^2} - 3x + 2} \right)dx} = \left[ {\frac{{{x^4}}}{4} - {x^3} + {x^2}} \right]_1^3 = 2 \cr & \therefore \max f\left( x \right) = 2.\,\,{\text{So, the range }} = \left[ { - \frac{1}{4},\,2} \right] \cr} $$

Releted MCQ Question on
Calculus >> Application of Integration

Releted Question 1

The area bounded by the curves $$y = f\left( x \right),$$   the $$x$$-axis and the ordinates $$x = 1$$  and $$x = b$$  is $$\left( {b - 1} \right)\sin \left( {3b + 4} \right).$$     Then $$f\left( x \right)$$  is-

A. $$\left( {x - 1} \right)\cos \left( {3x + 4} \right)$$
B. $$\sin \,\left( {3x + 4} \right)$$
C. $$\sin \,\left( {3x + 4} \right) + 3\left( {x - 1} \right)\cos \left( {3x + 4} \right)$$
D. none of these
Releted Question 2

The area bounded by the curves $$y = \left| x \right| - 1$$   and $$y = - \left| x \right| + 1$$   is-

A. $$1$$
B. $$2$$
C. $$2\sqrt 2 $$
D. $$4$$
Releted Question 3

The area bounded by the curves $$y = \sqrt x ,\,2y + 3 = x$$    and $$x$$-axis in the 1st quadrant is-

A. $$9$$
B. $$\frac{{27}}{4}$$
C. $$36$$
D. $$18$$
Releted Question 4

The area enclosed between the curves $$y = a{x^2}$$   and $$x = a{y^2}\left( {a > 0} \right)$$    is 1 sq. unit, then the value of $$a$$ is-

A. $$\frac{1}{{\sqrt 3 }}$$
B. $$\frac{1}{2}$$
C. $$1$$
D. $$\frac{1}{3}$$

Practice More Releted MCQ Question on
Application of Integration


Practice More MCQ Question on Maths Section