Question

Let $$f\left( x \right)$$  be a continuous function such that $$\int_n^{n + 1} {f\left( x \right)dx = {n^3},\,n\, \in \,Z.} $$      Then the value of $$\int_{ - 3}^3 {f\left( x \right)dx} $$    is :

A. $$9$$
B. $$-27$$  
C. $$-9$$
D. none of these
Answer :   $$-27$$
Solution :
$$\eqalign{ & {\text{Given,}} \cr & \int_n^{n + 1} {f\left( x \right)} dx = {n^3}\,;\,n \in {\bf{Z}}......\left( 1 \right) \cr & {\text{Let }}I = \int_{ - 3}^3 {f\left( x \right)dx} \cr & = \int_{ - 3}^{ - 2} {f\left( x \right)} dx + \int_{ - 2}^{ - 1} {f\left( x \right)dx + } \int_{ - 1}^0 {f\left( x \right)dx} + \int_0^1 {f\left( x \right)dx} + \int_1^2 {f\left( x \right)dx} + \int_2^3 {f\left( x \right)dx} \cr & = {\left( { - 3} \right)^3} + {\left( { - 2} \right)^3} + {\left( { - 1} \right)^3} + {0^3} + {1^3} + {2^3} \cr & = - 27 - 8 - 1 + 0 + 1 + 8 \cr & = - 27 \cr & {\text{Hence, }}\int_{ - 3}^3 {f\left( x \right)dx} = - 27 \cr} $$

Releted MCQ Question on
Calculus >> Application of Integration

Releted Question 1

The area bounded by the curves $$y = f\left( x \right),$$   the $$x$$-axis and the ordinates $$x = 1$$  and $$x = b$$  is $$\left( {b - 1} \right)\sin \left( {3b + 4} \right).$$     Then $$f\left( x \right)$$  is-

A. $$\left( {x - 1} \right)\cos \left( {3x + 4} \right)$$
B. $$\sin \,\left( {3x + 4} \right)$$
C. $$\sin \,\left( {3x + 4} \right) + 3\left( {x - 1} \right)\cos \left( {3x + 4} \right)$$
D. none of these
Releted Question 2

The area bounded by the curves $$y = \left| x \right| - 1$$   and $$y = - \left| x \right| + 1$$   is-

A. $$1$$
B. $$2$$
C. $$2\sqrt 2 $$
D. $$4$$
Releted Question 3

The area bounded by the curves $$y = \sqrt x ,\,2y + 3 = x$$    and $$x$$-axis in the 1st quadrant is-

A. $$9$$
B. $$\frac{{27}}{4}$$
C. $$36$$
D. $$18$$
Releted Question 4

The area enclosed between the curves $$y = a{x^2}$$   and $$x = a{y^2}\left( {a > 0} \right)$$    is 1 sq. unit, then the value of $$a$$ is-

A. $$\frac{1}{{\sqrt 3 }}$$
B. $$\frac{1}{2}$$
C. $$1$$
D. $$\frac{1}{3}$$

Practice More Releted MCQ Question on
Application of Integration


Practice More MCQ Question on Maths Section