Question

Let $$f\left( x \right)$$  be a continuous function such that $$f\left( x \right)$$  does not vanish for all $$x\, \in \,R.$$   If $$\int_2^3 {f\left( x \right)} dx = \int_{ - 2}^3 {f\left( x \right)} dx$$      then $$f\left( x \right),\,x\, \in \,R,$$    is :

A. an even function
B. an odd function
C. a periodic function
D. none of these  
Answer :   none of these
Solution :
$$\eqalign{ & \int_{ - 2}^3 {f\left( x \right)dx} - \int_2^3 {f\left( x \right)} dx = 0 \cr & {\text{or }}\int_{ - 2}^2 {f\left( x \right)} dx = 0 \cr & {\text{or }}\int_{ - 2}^0 {f\left( x \right)} dx + \int_0^2 {f\left( x \right)} dx = 0 \cr} $$
$${\text{or }}\int_0^2 {\left\{ {f\left( x \right) + f\left( { - x} \right)} \right\}dx = 0} ,$$       which may imply $$f\left( { - x} \right) = - f\left( x \right)$$    in $$\left[ { - 2,\,2} \right].$$
Nothing can be said for the whole of $$R.$$

Releted MCQ Question on
Calculus >> Application of Integration

Releted Question 1

The area bounded by the curves $$y = f\left( x \right),$$   the $$x$$-axis and the ordinates $$x = 1$$  and $$x = b$$  is $$\left( {b - 1} \right)\sin \left( {3b + 4} \right).$$     Then $$f\left( x \right)$$  is-

A. $$\left( {x - 1} \right)\cos \left( {3x + 4} \right)$$
B. $$\sin \,\left( {3x + 4} \right)$$
C. $$\sin \,\left( {3x + 4} \right) + 3\left( {x - 1} \right)\cos \left( {3x + 4} \right)$$
D. none of these
Releted Question 2

The area bounded by the curves $$y = \left| x \right| - 1$$   and $$y = - \left| x \right| + 1$$   is-

A. $$1$$
B. $$2$$
C. $$2\sqrt 2 $$
D. $$4$$
Releted Question 3

The area bounded by the curves $$y = \sqrt x ,\,2y + 3 = x$$    and $$x$$-axis in the 1st quadrant is-

A. $$9$$
B. $$\frac{{27}}{4}$$
C. $$36$$
D. $$18$$
Releted Question 4

The area enclosed between the curves $$y = a{x^2}$$   and $$x = a{y^2}\left( {a > 0} \right)$$    is 1 sq. unit, then the value of $$a$$ is-

A. $$\frac{1}{{\sqrt 3 }}$$
B. $$\frac{1}{2}$$
C. $$1$$
D. $$\frac{1}{3}$$

Practice More Releted MCQ Question on
Application of Integration


Practice More MCQ Question on Maths Section