Question

Let $$f\left( x \right)$$  be a continuous function in $$R$$ such that $$f\left( x \right) + f\left( y \right) = f\left( {x + y} \right).$$     If $$\int_0^3 {f\left( x \right)dx = k} $$    then $$\int_{ - 3}^3 {f\left( x \right)dx} $$    is equal to

A. $$2k$$
B. 0  
C. $$\frac{k}{2}$$
D. $$-2k$$
Answer :   0
Solution :
$$\eqalign{ & {\text{Putting }}x = 0,\,y = 0,\,{\text{we get}}\,{\text{ }}f\left( 0 \right) + f\left( 0 \right) = f\left( 0 \right) \cr & \therefore f\left( 0 \right) = 0 \cr & {\text{Putting }}y = - x,\,f\left( x \right) + f\left( { - x} \right) = f\left( {x - x} \right) = f\left( 0 \right) = 0 \cr & \therefore f\left( { - x} \right) = - f\left( x \right) \cr & \therefore f\left( x \right)\,{\text{is an odd function}}{\text{. So, }}\int_{ - 3}^3 {f\left( x \right)dx = 0} \cr} $$

Releted MCQ Question on
Calculus >> Application of Integration

Releted Question 1

The area bounded by the curves $$y = f\left( x \right),$$   the $$x$$-axis and the ordinates $$x = 1$$  and $$x = b$$  is $$\left( {b - 1} \right)\sin \left( {3b + 4} \right).$$     Then $$f\left( x \right)$$  is-

A. $$\left( {x - 1} \right)\cos \left( {3x + 4} \right)$$
B. $$\sin \,\left( {3x + 4} \right)$$
C. $$\sin \,\left( {3x + 4} \right) + 3\left( {x - 1} \right)\cos \left( {3x + 4} \right)$$
D. none of these
Releted Question 2

The area bounded by the curves $$y = \left| x \right| - 1$$   and $$y = - \left| x \right| + 1$$   is-

A. $$1$$
B. $$2$$
C. $$2\sqrt 2 $$
D. $$4$$
Releted Question 3

The area bounded by the curves $$y = \sqrt x ,\,2y + 3 = x$$    and $$x$$-axis in the 1st quadrant is-

A. $$9$$
B. $$\frac{{27}}{4}$$
C. $$36$$
D. $$18$$
Releted Question 4

The area enclosed between the curves $$y = a{x^2}$$   and $$x = a{y^2}\left( {a > 0} \right)$$    is 1 sq. unit, then the value of $$a$$ is-

A. $$\frac{1}{{\sqrt 3 }}$$
B. $$\frac{1}{2}$$
C. $$1$$
D. $$\frac{1}{3}$$

Practice More Releted MCQ Question on
Application of Integration


Practice More MCQ Question on Maths Section