Question

Let \[f\left( x \right) = \left\{ \begin{array}{l} \,\,\,{5^{\frac{1}{x}}},\,\,\,\,\,\,\,x < 0\\ \lambda \left[ x \right],\,\,\,\,x \ge 0 \end{array} \right.{\rm{ \,and\,\, }}\lambda \, \in \,R\]         then at $$x = 0$$

A. $$f$$ is discontinuous  
B. $$f$$ is continuous only, $$\lambda = 0$$
C. $$f$$ is continuous only, whatever $$\lambda $$ may be
D. none of these
Answer :   $$f$$ is discontinuous
Solution :
As we know,
A function $$f\left( x \right)$$  is said to be continuous at a point $$x = a$$  iff
$$\mathop {\lim }\limits_{x \to a} f\left( x \right) = f\left( a \right),$$    otherwise not continuous.
Thus $$f\left( x \right)$$ is continuous at $$x = a$$  iff
$$\mathop {\lim }\limits_{x \to {a^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {a^ + }} f\left( x \right) = f\left( a \right)$$
\[{\rm{Since, }}f\left( x \right) = \left\{ \begin{array}{l} \,\,\,{5^{\frac{1}{x}}},\,\,\,\,\,\,\,x < 0\\ \lambda \left[ x \right],\,\,\,\,x \ge 0 \end{array} \right.{\rm{ \,and\,\, }}\lambda \, \in \,R\]
$$\eqalign{ & {\text{R}}{\text{.H}}{\text{.L}}{\text{. at }}x = 0:\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ + }} \lambda \left[ x \right] = \mathop {\lim }\limits_{h \to 0} \lambda \left[ h \right] = 0 \cr & {\text{L}}{\text{.H}}{\text{.L}}{\text{. at }}x = 0:\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ - }} {5^{\frac{1}{x}}} = \mathop {\lim }\limits_{h \to 0} {5^{ - \frac{1}{h}}} = {5^\infty } = \infty \cr & {\text{and }}f\left( 0 \right) = \lambda \left[ 0 \right]0 \cr & {\text{Since, L}}{\text{.H}}{\text{.L}}{\text{.}} \ne {\text{R}}{\text{.H}}{\text{.L}}{\text{.}} \cr} $$
$$\therefore \,f\left( x \right)$$   is not continuous.

Releted MCQ Question on
Calculus >> Continuity

Releted Question 1

For a real number $$y,$$ let $$\left[ y \right]$$ denotes the greatest integer less than or equal to $$y:$$ Then the function $$f\left( x \right) = \frac{{\tan \left( {\pi \left[ {x - \pi } \right]} \right)}}{{1 + {{\left[ x \right]}^2}}}$$     is-

A. discontinuous at some $$x$$
B. continuous at all $$x,$$ but the derivative $$f'\left( x \right)$$  does not exist for some $$x$$
C. $$f'\left( x \right)$$  exists for all $$x,$$ but the second derivative $$f'\left( x \right)$$  does not exist for some $$x$$
D. $$f'\left( x \right)$$  exists for all $$x$$
Releted Question 2

The function $$f\left( x \right) = \frac{{\ln \left( {1 + ax} \right) - \ln \left( {1 - bx} \right)}}{x}$$       is not defined at $$x = 0.$$  The value which should be assigned to $$f$$ at $$x = 0,$$  so that it is continuous at $$x =0,$$  is-

A. $$a-b$$
B. $$a+b$$
C. $$\ln a - \ln b$$
D. none of these
Releted Question 3

The function $$f\left( x \right) = \left[ x \right]\cos \left( {\frac{{2x - 1}}{2}} \right)\pi ,\,\left[ . \right]$$      denotes the greatest integer function, is discontinuous at-

A. all $$x$$
B. All integer points
C. No $$x$$
D. $$x$$ which is not an integer
Releted Question 4

The function $$f\left( x \right) = {\left[ x \right]^2} - \left[ {{x^2}} \right]$$    (where $$\left[ y \right]$$ is the greatest integer less than or equal to $$y$$ ), is discontinuous at-

A. all integers
B. all integers except 0 and 1
C. all integers except 0
D. all integers except 1

Practice More Releted MCQ Question on
Continuity


Practice More MCQ Question on Maths Section