Question

Let \[f\left( x \right) = \left\{ \begin{array}{l} 3x - 4,\,\,\,\,\,0 \le x \le 2\\ 2x + \ell ,\,\,\,\,\,\,2 < x \le 9 \end{array} \right.\]
If $$f$$ is continuous at $$x = 2,$$  then what is the value of $$\ell \,?$$

A. $$0$$
B. $$2$$
C. $$ - 2$$  
D. $$ - 1$$
Answer :   $$ - 2$$
Solution :
Given function is : \[f\left( x \right) = \left\{ \begin{array}{l} 3x - 4,\,\,\,\,\,0 \le x \le 2\\ 2x + \ell ,\,\,\,\,\,\,2 < x \le 9 \end{array} \right.\]      and also given that $$f\left( x \right)$$  is continuous at $$x = 2$$
For a function to be continuous at a point $${\text{L}}{\text{.H}}{\text{.L}}{\text{.}} = {\text{R}}{\text{.H}}{\text{.L}}{\text{.}} = {\text{V}}{\text{.F}}{\text{.}}$$      at that point. $$f\left( 2 \right) = 2 = {\text{V}}{\text{.F}}{\text{.}}$$
$$\eqalign{ & \Rightarrow {\text{R}}{\text{.H}}{\text{.L}}{\text{.}}\,:\,\mathop {\lim }\limits_{x \to 2} \left( {2x + \ell } \right) = 3\left( 2 \right) - 4 \cr & \Rightarrow \mathop {\lim }\limits_{h \to 0} \left\{ {2\left( {2 + h} \right) + \ell } \right\} = 6 - 4 \cr & \Rightarrow 4 + \ell = 2 \cr & \Rightarrow \ell = - 2 \cr} $$

Releted MCQ Question on
Calculus >> Continuity

Releted Question 1

For a real number $$y,$$ let $$\left[ y \right]$$ denotes the greatest integer less than or equal to $$y:$$ Then the function $$f\left( x \right) = \frac{{\tan \left( {\pi \left[ {x - \pi } \right]} \right)}}{{1 + {{\left[ x \right]}^2}}}$$     is-

A. discontinuous at some $$x$$
B. continuous at all $$x,$$ but the derivative $$f'\left( x \right)$$  does not exist for some $$x$$
C. $$f'\left( x \right)$$  exists for all $$x,$$ but the second derivative $$f'\left( x \right)$$  does not exist for some $$x$$
D. $$f'\left( x \right)$$  exists for all $$x$$
Releted Question 2

The function $$f\left( x \right) = \frac{{\ln \left( {1 + ax} \right) - \ln \left( {1 - bx} \right)}}{x}$$       is not defined at $$x = 0.$$  The value which should be assigned to $$f$$ at $$x = 0,$$  so that it is continuous at $$x =0,$$  is-

A. $$a-b$$
B. $$a+b$$
C. $$\ln a - \ln b$$
D. none of these
Releted Question 3

The function $$f\left( x \right) = \left[ x \right]\cos \left( {\frac{{2x - 1}}{2}} \right)\pi ,\,\left[ . \right]$$      denotes the greatest integer function, is discontinuous at-

A. all $$x$$
B. All integer points
C. No $$x$$
D. $$x$$ which is not an integer
Releted Question 4

The function $$f\left( x \right) = {\left[ x \right]^2} - \left[ {{x^2}} \right]$$    (where $$\left[ y \right]$$ is the greatest integer less than or equal to $$y$$ ), is discontinuous at-

A. all integers
B. all integers except 0 and 1
C. all integers except 0
D. all integers except 1

Practice More Releted MCQ Question on
Continuity


Practice More MCQ Question on Maths Section